Unique Optical Properties (unique + optical_property)

Distribution by Scientific Domains


Selected Abstracts


Surface-enhanced Raman scattering spectroscopy via gold nanostars

JOURNAL OF RAMAN SPECTROSCOPY, Issue 1 2009
E. Nalbant Esenturk
Abstract Anisotropic metallic nanoparticles (NPs) have unique optical properties, which lend them to applications such as surface-enhanced Raman scattering (SERS) spectroscopy. Star-shaped gold (Au) NPs were prepared in aqueous solutions by the seed-mediated growth method and tested for Raman enhancement using 2-mercaptopyridine (2-MPy) and crystal violet (CV) probing molecules. For both molecules, the SERS activity of the nanostars was notably stronger than that of the spherical Au NPs of similar size. The Raman enhancement factors (EFs) for 2-MPy on Au nanostars and nanorods are comparable and estimated as greater than 5 orders of magnitude. However, the enhancement for CV on nanostars was significantly higher than for nanorods, in particular at CV concentrations of 100 nM or lower. This article is a US Government work and is in the public domain in the USA. Published in 2008 by John Wiley & Sons, Ltd. [source]


Structural Effects on the Electronic Absorption Properties of 5,6-Dihydroxyindole Oligomers: The Potential of an Integrated Experimental and DFT Approach to Model Eumelanin Optical Properties,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 3 2008
Marco D'Ischia
Elucidation of the relationships between structural features and UV,visible absorption properties of 5,6-dihydroxyindole oligomers is an essential step towards an understanding of the unique optical properties of eumelanins. Herein, we report the first combined experimental and density functional theory (DFT) investigation of the 5,6-dihydroxyindole oligomers so far isolated. 2,2,-Biindolyl 2 and the 2,4,-biindolyl 3 absorb at longer wavelengths relative to 2,7,-biindolyl 4 and their spectra were well predicted by DFT analysis. The absorption bands of 2,4,:2,,4,,- and 2,4,:2,,7,,-triindolyls 5 and 6 also fall at different wavelengths and can be interpreted by DFT simulations as being due to a combination of two main separate transitions. Tetramer 7, in which two 2,4,-biindolyl units are linked through a 2,3,-connection, exhibits a broad chromophore extending over the entire UV range without well defined absorption maxima. Within the dimer,tetramer range examined, three key points emerge: (1) an increase in oligomer chain length does not result in any regular and predictable bathochromic shift; (2) a marked broadening of the absorption bands occurs when going from the monomer to the tetramer structure; and (3) the mode of coupling of the indole units is a crucial, hitherto unrecognized, structural parameter affecting the electronic absorption properties of 5,6-dihydroxyindole oligomers. It is concluded that use of experimentally characterized oligomeric scaffolds as a basis for DFT calculations is a most promising approach to building reliable structural models for studies of eumelanins optical properties. [source]


Crystallization of quinohaemoprotein alcohol dehydrogenase from Comamonas testosteroni: crystals with unique optical properties

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 11 2001
Arthur Oubrie
Quinohaemoprotein alcohol dehydrogenase from Comamonas testosteroni is a functional electron-transfer protein containing both a haem c and a pyrroloquinoline quinone cofactor. The enzyme has been crystallized at 277,K using polyethylene glycol 6000 as precipitant. The crystals belong to space group C2, with unit-cell parameters a = 98.1, b = 74.3, c = 92.2,Å, , = 105.9°. A native data set with a resolution of 2.44,Å resolution has been collected. The approximate orientation of the haem group with respect to the unit-cell axes has been determined from the optical properties of the crystals. [source]


Host,Guest Interaction of Chaperonin GroEL and Water-Soluble CdTe Quantum Dots and its Size-Selective Inclusion

CHEMPHYSCHEM, Issue 15 2008
Chaoqing Dong
Abstract Some nanoparticles, such as quantum dots (QDs), are widely used in the biological and biomedical fields due to their unique optical properties. However, little is currently known about the interaction between these nanoparticles and biomolecules. Herein, we systemically investigated the interaction between chaperonin GroEL and water-soluble CdTe QDs based on fluorescence correlation spectroscopy (FCS), capillary electrophoresis, and fluorescence spectrometry. We observed that some water-soluble CdTe QDs were able to enter the inner cavity of GroEL and formed an inclusion complex after the activation of chaperonin GroEL with ATP. The inclusion of GroEL was size-selective to QDs and only small QDs were able to enter the inner cavity. The inclusion could suppress the fluorescence quenching of the QDs. Meanwhile, we evaluated the association constant between chaperonin GroEL and CdTe QDs by FCS. Our results further demonstrated that FCS was a very useful tool for study of the interaction of QDs and biomolecules. [source]