Home About us Contact | |||
Uniform Flow (uniform + flow)
Selected Abstracts3D float tracking: in situ floodplain roughness estimationHYDROLOGICAL PROCESSES, Issue 2 2009Menno Straatsma Abstract This paper presents a novel technique to quantify in situ hydrodynamic roughness of submerged floodplain vegetation: 3D float tracking. This method uses a custom-built floating tripod that is released on the inundated floodplain and tracked from shore by a robotic total station. Simultaneously, an acoustic Doppler current profiler (ADCP) collects flow velocity profiles and water depth data. Roughness values are derived from two methods based on (1) run-averaged values of water depth, slope and flow velocity to compute the roughness based on the Chézy equation, assuming uniform flow, (2) the equation for one-dimensional free surface flow in a moving window. A sensitivity analysis using synthetic data proved that the median value of the roughness, derived using method 2, is independent of (1) the noise in water levels, up to 9 mm, (2) bottom surface slope, and (3) topographic undulations. The window size should be at least 40 m for a typical lowland river setup. Field measurements were carried out on two floodplain sections with an average vegetation height of 0·030 (Arnhem) and 0·043 m (Dreumel). Method 1 resulted in a Nikuradse roughness length of 0·08 m for both locations. Method 2 gave 0·12 m for Arnhem and 0·19 m for Dreumel. In Arnhem, a spatial pattern of roughness values was present, which might be related to fractional vegetation cover or vegetation density during the flood peak. 3D float tracking proved a flexible and detailed method for roughness determination in the absence of waves, and provided an unrestricted view from shore. Copyright © 2008 John Wiley & Sons, Ltd. [source] An accurate integral-based scheme for advection,diffusion equationINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 10 2001Tung-Lin Tsai Abstract This paper proposes an accurate integral-based scheme for solving the advection,diffusion equation. In the proposed scheme the advection,diffusion equation is integrated over a computational element using the quadratic polynomial interpolation function. Then elements are connected by the continuity of first derivative at boundary points of adjacent elements. The proposed scheme is unconditionally stable and results in a tridiagonal system of equations which can be solved efficiently by the Thomas algorithm. Using the method of fractional steps, the proposed scheme can be extended straightforwardly from one-dimensional to multi-dimensional problems without much difficulty and complication. To investigate the computational performances of the proposed scheme five numerical examples are considered: (i) dispersion of Gaussian concentration distribution in one-dimensional uniform flow; (ii) one-dimensional viscous Burgers equation; (iii) pure advection of Gaussian concentration distribution in two-dimensional uniform flow; (iv) pure advection of Gaussian concentration distribution in two-dimensional rigid-body rotating flow; and (v) three-dimensional diffusion in a shear flow. In comparison not only with the QUICKEST scheme, the fully time-centred implicit QUICK scheme and the fully time-centred implicit TCSD scheme for one-dimensional problem but also with the ADI-QUICK scheme, the ADI-TCSD scheme and the MOSQUITO scheme for two-dimensional problems, the proposed scheme shows convincing computational performances. Copyright © 2001 John Wiley & Sons, Ltd. [source] Prediction of entrance length and mass suction rate for a cylindrical sucking funnelINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 6 2010Dipti Prasad Mishra Abstract Conservation equations for mass, momentum and energy have been solved numerically for a cylindrical funnel with louvers (lateral openings on the side wall of the cylindrical funnel through which air can come into it) to compute the suction rate of air into the funnel. The nozzle placed centrally at the bottom of the cylinder ejects high-velocity hot gaseous products so that atmospheric air gets sucked into the funnel. The objective of the work is to compute the ratio of the rate of mass suction to that of the mass ejected by the nozzle for different operating conditions and geometrical size of the funnel. From the computation it has been found that there exists optimum funnel diameter and optimum funnel height for which the mass suction is the highest. The protruding length of the nozzle into the funnel has almost no effect on the mass suction rate after a certain funnel height. The louvers opening area has a very high impact on the mass suction rate. The entrance length for such a sucking funnel is strikingly much lower compared with a simple cylindrical pipe having uniform flow at the inlet at same Reynolds number. A new correlation has been developed to propose the entrance length for a sucking pipe, the rate of mass suction into it and the exhaust plume temperature over a wide range of operating parameters that are normally encountered in a general funnel operations of naval or merchant ship. Copyright © 2009 John Wiley & Sons, Ltd. [source] The influence of power-law rheology on flow distribution in coathanger manifolds,POLYMER ENGINEERING & SCIENCE, Issue 3 2003J. D. Reid Coathanger dies are effective in delivering uniform flow if a polymer melt; however, when the fluid flow index varies from the design values, the flow is not uniform. Although mechanisms such as die lip adjustments have been effective tools for adjusting flow profiles, the issue of a variable flow index has not been fully addressed at the design stage. An analytical solution, based on the assumptions present in the 1-D design equation, has been developed for the flow distribution in a coathanger manifold. This solution determines the flow distribution for a power-law fluid with a flow index n* in a manifold designed for a separate flow index n*. From this solution, a uniformity index and a critical design angle are defined. The critical design angle is the angle at which the local derivative of the uniformity index with respect to n* approaches a maximum (for n* < n) or a minimum (for n* > n) as a function of the design angle. The critical design angle is independent of n and is presented as a function of the manifold aspect ratio. [source] Some safety aspects on the design of sparger systems for the oxidation of organic liquidsPROCESS SAFETY PROGRESS, Issue 4 2006Manfred Weber Abstract This article summarizes all important parameters for a proper and safe design of the sparger system for large bubble columns, used for the oxidation of organic liquids with air or oxygen enriched air. As an example, this is done for the oxidation of cumene (isopropylbenzene), which is worldwide used in phenol processes. Based on data in the literature and newly measured flammability limits at 100° C and 5 barg, the potential hazards from uncontrolled gas reactions can be avoided, ultimately avoiding an explosion in the sparger system. For normal operation, a minimum flow of gas is necessary to ensure a uniform flow through all outlets, which are typically holes with a diameter of several millimeters. All holes should be directed towards the vessel bottom to self-drain the sparger. For start-up, a previous inerting of the sparger with nitrogen is preferable. Nevertheless, a certain amount of organic liquid may still be in the sparger system prior to start up. Therefore, the compressed air/oxygen should have a temperature below the Oxidation Initiation Temperature to avoid any initiation of a liquid phase oxidation within the sparger. In addition, the pressure in the sparger system should be high enough to keep the gas phase concentration of the organic liquid below the Lower Flammability Limit. © 2006 American Institute of Chemical Engineers Process Saf Prog, 2006 [source] A geomorphological framework for river characterization and habitat assessmentAQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 5 2001J.R. Thomson Abstract 1.,Methods to assess the physical habitat available to aquatic organisms provide important tools for many aspects of river management, including river health monitoring, determination of river restoration/rehabilitation strategies, setting and evaluating environmental flows and as surrogates for biodiversity assessment. 2.,Procedures used to assess physical habitat need to be ecologically and geomorphologically meaningful, as well as practicable. A conceptual methodological procedure is presented that evaluates and links instream habitat and geomorphology. 3.,The heterogeneity of habitat potential is determined within geomorphic units (such as pools, runs, riffles) by assessing flow hydraulics and substrate character. These two variables are integrated as hydraulic units , patches of uniform flow and substrate. 4.,This methodology forms a logical extension of the River Styles framework that characterizes river form and behaviour at four inter-related scales: catchments, landscape units, River Styles (reaches) and geomorphic units. As geomorphic units constitute the basis to assess aquatic habitat availability, and they form the building blocks of river and floodplain systems, intact reaches of a particular River Style should have similar assemblages of instream and floodplain habitat. 5.,An application of the hydraulic unit procedure is demonstrated in gorge, partly-confined and alluvial River Styles from the Manning catchment in northern New South Wales, Australia. Copyright © 2001 John Wiley & Sons, Ltd. [source] |