Undisturbed Soil (undisturbed + soil)

Distribution by Scientific Domains

Terms modified by Undisturbed Soil

  • undisturbed soil column

  • Selected Abstracts


    Sensitivity of multi-coil frequency domain electromagnetic induction sensors to map soil magnetic susceptibility

    EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 4 2010
    D. Simpson
    Magnetic susceptibility is an important indicator of anthropogenic disturbance in the natural soil. This property is often mapped with magnetic gradiometers in archaeological prospection studies. It is also detected with frequency domain electromagnetic induction (FDEM) sensors, which have the advantage that they can simultaneously measure the electrical conductivity. The detection level of FDEM sensors for magnetic structures is very dependent on the coil configuration. Apart from theoretical modelling studies, a thorough investigation with field models has not been conducted until now. Therefore, the goal of this study was to test multiple coil configurations on a test field with naturally enhanced magnetic susceptibility in the topsoil and with different types of structures mimicking real archaeological features. Two FDEM sensors were used with coil separations between 0.5 and 2 m and with three coil orientations. First, a vertical sounding was conducted over the undisturbed soil to test the validity of a theoretical layered model, which can be used to infer the depth sensitivity of the coil configurations. The modelled sounding values corresponded well with the measured data, which means that the theoretical models are applicable to layered soils. Second, magnetic structures were buried in the site and the resulting anomalies measured to a very high resolution. The results showed remarkable differences in amplitude and complexity between the responses of the coil configurations. The 2-m horizontal coplanar and 1.1-m perpendicular coil configurations produced the clearest anomalies and resembled best a gradiometer measurement. [source]


    Regulating the mobility of Cd, Cu and Pb in an acid soil with amendments of phosphogypsum, sugar foam, and phosphoric rock

    EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 2 2006
    F. Garrido
    Summary When acid soil has been contaminated by metals as a result of industrial discharges, accidental spills, or acid mine drainage it may be desirable to retain the metals in the soil rather than allow them to leach away. We have investigated the potential of phosphogypsum (PG), sugar foam (SF), and phosphoric rock (PR) to regulate the availability and mobility of Pb, Cd and Cu. We have also identified changes in attenuation during incubation for 1 year and the effect of aging on metal speciation in amended soils. We studied miscible displacement in columns of undisturbed soil previously treated with solutions of the amendments and soluble metals and, subsequently, single and sequential chemical metal extractions. All amendments increased the soil's metal retention capacity. This, in turn, increased the amount of metal extractable by diethylenetriaminepentaacetic acid (DTPA). However, over time the amounts of DTPA-extractable metal decreased, particularly for Cu and Pb. Both Cu and Cd were held preferentially within the acetic acid-extractable fraction (operationally defined exchangeable fraction , EX fraction), whereas Pb was associated mainly with the hydroxylammonium-extractable fraction (operationally defined bound to Fe and Al hydroxides , OX fraction). Both Pb and Cu in the oxide and organic fractions increased in the PG- and SF-treated soils. In general, the distribution of metal did not change in the PR-treated columns after the incubation. Finally, scanning electron microscopy in back-scattered electron mode (SEM,BSE) showed the formation of Al-hydroxy polymers which provides the soils with additional cation sorption capacity. In the PG- and PR-treated columns, P and S were associated with these formations. The three metals were associated with the Al polymers, probably through direct coordination or the formation of ternary complexes with the inorganic ligands phosphate and sulphate. [source]


    Assessing the impact of the hydraulic properties of a crusted soil on overland flow modelling at the field scale

    HYDROLOGICAL PROCESSES, Issue 8 2006
    Nanée Chahinian
    Abstract Soil surface crusts are widely reported to favour Hortonian runoff, but are not explicitly represented in most rainfall-runoff models. The aim of this paper is to assess the impact of soil surface crusts on infiltration and runoff modelling at two spatial scales, i.e. the local scale and the plot scale. At the local scale, two separate single ring infiltration experiments are undertaken. The first is performed on the undisturbed soil, whereas the second is done after removal of the soil surface crust. The HYDRUS 2D two-dimensional vertical infiltration model is then used in an inverse modelling approach, first to estimate the soil hydraulic properties of the crust and the subsoil, and then the effective hydraulic properties of the soil represented as a single uniform layer. The results show that the crust hydraulic conductivity is 10 times lower than that of the subsoil, thus illustrating the limiting role the crust has on infiltration. Moving up to the plot scale, a rainfall-runoff model coupling the Richards equation to a transfer function is used to simulate Hortonian overland flow hydrographs. The previously calculated hydraulic properties are used, and a comparison is undertaken between a single-layer and a double-layer representation of the crusted soil. The results of the rainfall-runoff model show that the soil hydraulic properties calculated at the local scale give acceptable results when used to model runoff at the plot scale directly, without any numerical calibration. Also, at the plot scale, no clear improvement of the results can be seen when using a double-layer representation of the soil in comparison with a single homogeneous layer. This is due to the hydrological characteristics of Hortonian runoff, which is triggered by a rainfall intensity exceeding the saturated hydraulic conductivity of the soil surface. Consequently, the rainfall-runoff model is more sensitive to rainfall than to the subsoil's hydrodynamic properties. Therefore, the use of a double-layer soil model to represent runoff on a crusted soil does not seem necessary, as the increase of precision in the soil discretization is not justified by a better performance of the model. Copyright © 2005 John Wiley & Sons, Ltd. [source]


    An analytical solution of one-dimensional consolidation for soft sensitive soil ground

    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 9 2004
    Yun-Min Chen
    Abstract An analytical solution of one-dimensional consolidation for soft sensitive soil ground is presented. The moving boundary is introduced to indicate the notable change of consolidation behaviour of sensitive soil with the increase of stress level. It is assumed that the soil structure of the upper subsoil gradually destroys downwards with the dissipation of pore pressure, and the coefficient of consolidation as well as the coefficient of permeability of the upper subsoil become small, which hinders the dissipation of pore pressure of the lower subsoil. The consolidation degree curve obtained from the present solution is found to lie between the two curves obtained from Terzaghi one-dimensional consolidation solution with the parameters of the undisturbed soil and the remolded soil. The calculated results provide a new explanation for a general phenomenon in the consolidation of soft sensitive soil ground, as that for high loadings the consolidation is longer than for small ones. It should be pointed out from this study that both the deep mixing method and the long vertical drains methods are effective techniques for improving deep sensitive soil ground. Copyright © 2004 John Wiley & Sons, Ltd. [source]


    Ground-penetrating radar survey over bronze age circular monuments on a sandy soil, complemented with electromagnetic induction and fluxgate gradiometer data

    ARCHAEOLOGICAL PROSPECTION, Issue 3 2009
    L. Verdonck
    Abstract This paper presents a ground-penetrating radar (GPR) survey over two circular structures originally surrounding Bronze Age burial mounds at the site of Koekelare (western Belgium). The region is characterized by sandy soils. Their low water storage capacity and the consequent moisture contrasts in dry summers played an important role in the detection of over 1000 Bronze Age funeral monuments through aerial archaeology in the past few decades. At Koekelare, low attenuation of GPR waves resulted in the detection of a double and single circular ditch. A fluxgate gradiometer survey and electromagnetic induction (EMI) measurements did not clearly reveal the ditches. For the GPR wave velocity analysis, constant velocity migration tests were combined with time-domain reflectometry (TDR). The TDR measurements were made at different depths within the ditches and in the adjacent undisturbed soil, so that the differences in the physical soil parameters could be assessed. At a depth of approximately 0.45 to 0.8,m, the relatively homogeneous ditch fill produces few GPR reflections compared with the undisturbed soil, and is visible as a weak negative anomaly on the horizontal slices. At this depth, the grey or brownish black ditch fill was found in augering samples, clearly distinguishable from the yellowish brown sandy soil outside the ditches. The transition between the ditch and the underlying soil caused a gradual reflection of radar energy at a depth of approximately 0.8 to 1.2,m, although TDR showed no marked differences in relative permittivity between the ditches and the surrounding soil, and no clear steps as a function of depth. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    In situ measurement of methane fluxes and analysis of transcribed particulate methane monooxygenase in desert soils

    ENVIRONMENTAL MICROBIOLOGY, Issue 10 2009
    Roey Angel
    Summary Aerated soils are a biological sink for atmospheric methane. However, the activity of desert soils and the presence of methanotrophs in these soils have hardly been studied. We studied on-site atmospheric methane consumption rates as well as the diversity and expression of the pmoA gene, coding for a subunit of the particulate methane monooxygenase, in arid and hyperarid soils in the Negev Desert, Israel. Methane uptake was only detected in undisturbed soils in the arid region (,90 mm year,1) and vertical methane profiles in soil showed the active layer to be at 0,20 cm depth. No methane uptake was detected in the hyperarid soils (,20 mm year,1) as well as in disturbed soils in the arid region (i.e. agricultural field and a mini-catchment). Molecular analysis of the methanotrophic community using terminal restriction fragment length polymorphism (T-RFLP) and cloning/sequencing of the pmoA gene detected methanotrophs in the active soils, whereas the inactive ones were dominated by sequences of the homologous gene amoA, coding for a subunit of the ammonia monooxygenase. Even in the active soils, methanotrophs (as well as in situ activity) could not be detected in the soil crust, which is the biologically most important layer in desert soils. All pmoA sequences belonged to yet uncultured strains. Transcript analysis showed dominance of sequences clustering within the JR3, formerly identified in Californian grassland soils. Our results show that although active methanotrophs are prevalent in arid soils they seem to be absent or inactive in hyperarid and disturbed arid soils. Furthermore, we postulate that methanotrophs of the yet uncultured JR3 cluster are the dominant atmospheric methane oxidizers in this ecosystem. [source]