Home About us Contact | |||
Undisturbed Control (undisturbed + control)
Selected AbstractsPlant functional group identity influences short-term peatland ecosystem carbon flux: evidence from a plant removal experimentFUNCTIONAL ECOLOGY, Issue 2 2009Susan E. Ward Summary 1Northern hemisphere peatlands are globally important stores of organic soil carbon. We examined effects of plant functional group identity on short-term carbon (C) flux in an ombrotrophic peatland in northern England, UK, by selectively removing one of each of the three dominant plant functional groups (ericoid dwarf-shrubs, graminoids and bryophytes). Carbon dynamics were quantified by a combination of CO2 flux measurements and 13CO2 stable isotope pulse labelling approaches. 2Significant effects of plant functional group removals on CO2 fluxes and tracer 13C uptake and turnover were detected. Removal of ericoid dwarf-shrubs had the greatest influence on gross CO2 flux, increasing rates of respiration and photosynthesis by > 200% relative to the undisturbed control. After pulse labelling with 13CO2, we found that turnover of recent photosynthate, measured as respired 13CO2, was also greatest in the absence of dwarf-shrubs. 3Analysis of 13C tracer enrichment in leaf tissues from all plant removal treatments showed that the rate of fixation of 13CO2 and turnover of 13C labelled photosynthate in leaf tissue was greatest in graminoids and lowest in bryophytes. Furthermore, graminoid leaf 13C enrichment was greatest when growing in the absence of dwarf-shrubs, suggesting that the presence of dwarf-shrubs reduced the photosynthetic activity of graminoids. 4We conclude that plant functional groups differentially influence the uptake and short-term flux of carbon in peatlands, suggesting that changes in the functional composition of vegetation resulting from global change have the potential to alter short-term patterns of carbon exchange in peatland. [source] The role of successional stage and small-scale disturbance for establishment of pioneer grass Corynephorus canescensAPPLIED VEGETATION SCIENCE, Issue 3 2010Okka Tschöpe Abstract Question: Which mechanisms promote the maintenance of the protected pioneer grass Corynephorus canescens in a mosaic landscape? Which are the interactive effects of small-scale disturbances, successional stage and year-to-year variation on early establishment probabilities of C. canescens? Location: Brandenburg, NE Germany. Methods: We measured emergence and survival rates over 3 yr in a sowing-experiment conducted in three successional stages (C. canescens -dominated site, ruderal forb site and pioneer forest) under two different regimes of mechanical ground disturbance (disturbed versus undisturbed control). Results: Overall, disturbance led to higher emergence in a humid year and to lower emergence in a very dry year. Apparently, when soil moisture was sufficient, the main factor limiting C. canescens' establishment was competition, while in the dry year, water became the limiting factor. Survival rates were not affected by disturbance. In humid years, C. canescens emerged in higher numbers in open successional stages while in the dry year, emergence rates were higher in late stages, suggesting an important role of late successional stages for the persistence of C. canescens. Conclusions: Our results suggest that small-scale disturbances can promote germination of C. canescens. However, disturbances should be carefully planned. The optimal strategy for promoting C. canescens is to apply disturbances just before seed dispersal and not during dry years. At the landscape scale, a mosaic of different vegetation types is beneficial for the protected pioneer grass as facilitation by late-successional species may be an important mechanism for the persistence of C. canescens, especially in dry years. [source] Mechanisms of population regulation in the fire ant Solenopsis invicta: an experimental studyJOURNAL OF ANIMAL ECOLOGY, Issue 3 2001Eldridge S. Adams Summary 1We tested for density-dependent regulation of biomass in a population of the fire ant Solenopsis invicta and examined the mechanisms of population recovery following replicated colony removals. 2,All colonies were killed within the core area (1018 m2) of six plots, while six additional plots served as undisturbed controls. Over the next 5 years, colonies were mapped several times per year and the biomass of each colony was estimated from the volume of the nest-mound. 3,The average biomass and density of colonies within the removal areas gradually converged on those of control plots and were no longer detectably different after two years. Thereafter, ant biomass on experimental and control plots showed nearly identical seasonal and yearly fluctuations. 4Territories of colonies surrounding the removal areas rapidly expanded following the deaths of neighbours, while average territory size on control plots showed little short-term change. 5,Significantly more new colonies were established within core areas of experimental plots than within core areas of control plots during the first year following removals. 6,The per-colony probability of movement and the net influx of colony biomass were significantly higher in central regions of the experimental plots than in control plots during the first year. The directions of colony movements were clustered towards the centres of experimental plots in the first 2 years, but did not show significant directional trends on control plots. 7,In all 5 years of the study, annual mortality rates were lower for larger colonies, but the size-specific risk of mortality was not significantly affected by the experimental removal of competitors. 8,The growth rates of colonies, adjusted for initial size, were significantly higher in central regions of experimental plots than in control plots during the first two years of the study. In all years, colony growth rates declined with increasing colony size. 9,These results indicate that populations of S. invicta are regulated by competition among neighbouring colonies. Due to large intraspecific variation in colony size, the dynamics of ant populations are described more accurately by measures of total ant biomass than by colony density alone. [source] Disturbance and reef topography maintain high local diversity in Ecklonia radiata kelp forestsOIKOS, Issue 10 2007Benjamin D. Toohey Disturbance of competitive-dominant plant and algae canopies often lead to increased diversity of the assemblage. Kelp forests, particularly those of temperate Western Australia, are habitats with high alpha diversity. This study investigated the roles of broad-scale canopy loss and local scale reef topography on structuring the kelp-dominated macroalgal forests in Western Australia. Eighteen 314,m2 circular areas were cleared of their Ecklonia radiata canopy and eighteen controls were established across three locations. The patterns of macroalgal recolonisation in replicate clearances were observed over a 34,month period. Macroalgal species richness initially increased after canopy removal with a turf of filamentous and foliose macroalgae dominating cleared areas for up to seven months. A dense Sargassum canopy dominated cleared areas from 11 to 22,months. By 34,months, partial recovery of the kelp canopy into cleared areas had occurred. Some cleared areas did not follow this trajectory but remained dominated by turfing, foliose and filamentous algae. As kelp canopies developed, the initial high species diversity declined but still remained elevated relative to undisturbed controls, even after 34 months. More complex reef topography was associated with greater variability in the algal assemblage between replicate quadrats suggesting colonising algae had a greater choice of microhabitats available to them on topographically complex reefs. Shading by canopies of either Sargassum spp. and E. radiata are proposed to highly influence the abundance of algae through competitive exclusion that is relaxed by disturbance of the canopy. Disturbance of the canopy in E. radiata kelp forests created a mosaic of different patch types (turf, Sargassum -dominated, kelp-dominated). These patch types were both transient and stable over the 34 months of this study, and are a potential contemporary process that maintains high species diversity in temperate kelp-dominated reefs. [source] |