Underlying Rhythms (underlying + rhythm)

Distribution by Scientific Domains


Selected Abstracts


Safety aspects for public access defibrillation using automated external defibrillators near high-voltage power lines

ACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 5 2004
C. J. Schlimp
Background:, Automated external defibrillators (AEDs) must combine easy operability and high-quality diagnosis even under unfavorable conditions. This study determined the influence of electromagnetic interference caused by high-voltage power lines with 16.7-Hz alternating current on the quality of AEDs' rhythm analysis. Methods:, Two AEDs frequently used in Austria were tested near high-voltage power lines (15 kV or 110 kV, alternating current with 16.7 Hz). The defibrillation electrodes were attached either to a proband with true sinus rhythm or to a resuscitation dummy with generated sinus rhythm, ventricular fibrillation, ventricular tachycardia or asystole. Results:, Electromagnetic interference was much more prominent in a human's than in a dummy's electrocardiogram and depended on the position of the electrodes and cables in relation to the power line. Near high-voltage power lines the AEDs showed a significant operational fault. One AED interpreted the interference as a motion artifact, even when underlying rhythms were clearly detectable. The other AED interpreted 16.7-Hz oscillation as ventricular fibrillation with consequent shock advice when no underlying rhythm was detected. Conclusion:, The tested AEDs neither filter nor recognize a technical interference of 16.7 Hz caused by 15-kV power lines above railway tracks or 110-kV overland power lines, as run by railway companies in Austria, Germany, Norway, Sweden and Switzerland. These failures in AEDs' algorithms for rhythm analysis may cause substantial harm to patients undergoing public access defibrillation. The proper function of AEDs needs to be reconsidered to guarantee patients' safety near high-voltage power lines. [source]


Abnormalities in the coordination of respiration and swallow in preterm infants with bronchopulmonary dysplasia

DEVELOPMENTAL MEDICINE & CHILD NEUROLOGY, Issue 7 2006
Ira H Gewolb MD
Individual rhythms of suck, swallow, and respiration are disrupted in preterm infants with bronchopulmonary dysplasia (BPD). Integration of respiration into suck-swallow efforts is critical for establishing coordinated suckle feeding. This study quantitatively assessed the coordination of respiration and swallow in infants with and without BPD. Thirty-four preterm infants of 26 to 33 weeks'gestational age were included: 14 participants with BPD (eight males, six females) and 20 comparison participants without BDP (10 males, 10 females). Participants were studied at postmenstrual age 32 to 40 weeks and postnatal age 2 to 12 weeks using digital recordings of pharyngeal pressure, nasal thermistor flow, and thoraco-abdominal plethysmography. The coefficients of variation (COV; standard deviation/mean) of the swallow-breath (SW-BR) and breath-breath (BR-BR) intervals during swallow runs, the percentage of,apneic swallows'(runs of ,3 swallows without interposed breaths), and phase relationships of respiration and swallow were used to quantify rhythmic coordination and integration of respiration into feeding episodes. Apneic swallows were significantly increased after 35 weeks in infants with BPD (mean 13.4% [SE 2.4]) compared with non-BDP infants (6.7% [SE 1.8];p < 0.05), as were SW-BR phase relationships involving apnea. The BPD cohort also had significantly higher SW-BR COV and BR-BR COV than non-BPD infants, indicating less rhythmic coordination of swallowing and respiration during feeding. Results emphasize the need for frequent rests and closer monitoring when feeding infants with respiratory compromise. Quantitative assessment of the underlying rhythms involved in feeding may be predictive of longer-term feeding and neurological problems. [source]


Safety aspects for public access defibrillation using automated external defibrillators near high-voltage power lines

ACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 5 2004
C. J. Schlimp
Background:, Automated external defibrillators (AEDs) must combine easy operability and high-quality diagnosis even under unfavorable conditions. This study determined the influence of electromagnetic interference caused by high-voltage power lines with 16.7-Hz alternating current on the quality of AEDs' rhythm analysis. Methods:, Two AEDs frequently used in Austria were tested near high-voltage power lines (15 kV or 110 kV, alternating current with 16.7 Hz). The defibrillation electrodes were attached either to a proband with true sinus rhythm or to a resuscitation dummy with generated sinus rhythm, ventricular fibrillation, ventricular tachycardia or asystole. Results:, Electromagnetic interference was much more prominent in a human's than in a dummy's electrocardiogram and depended on the position of the electrodes and cables in relation to the power line. Near high-voltage power lines the AEDs showed a significant operational fault. One AED interpreted the interference as a motion artifact, even when underlying rhythms were clearly detectable. The other AED interpreted 16.7-Hz oscillation as ventricular fibrillation with consequent shock advice when no underlying rhythm was detected. Conclusion:, The tested AEDs neither filter nor recognize a technical interference of 16.7 Hz caused by 15-kV power lines above railway tracks or 110-kV overland power lines, as run by railway companies in Austria, Germany, Norway, Sweden and Switzerland. These failures in AEDs' algorithms for rhythm analysis may cause substantial harm to patients undergoing public access defibrillation. The proper function of AEDs needs to be reconsidered to guarantee patients' safety near high-voltage power lines. [source]


Neural Regulation Of Renal Blood Flow: A Re-Examination

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 12 2000
Simon C Malpas
SUMMARY 1. The importance of renal sympathetic nerve activity (RSNA) in the regulation of renal function is well established. However, it is less clear how the renal vasculature responds to the different mean levels and patterns of RSNA. While many studies have indicated that small to moderate changes in RSNA preferentially regulate renin secretion or sodium excretion and only large changes in RSNA regulate renal blood flow (RBF), other experimental evidence suggests that small changes in RSNA can influence RBF 2. When RSNA has been directly measured in conjunction with RBF, it appears that a range of afferent stimuli can induce reflex changes in RBF. However, many studies in a variety of species have measured RBF only during stimuli designed to reflexly increase or decrease sympathetic activity, but have not recorded RSNA. While this approach can be informative, it is not definitive because the ability of the vasculature to respond to RSNA may, in part, reflect the resting level of RSNA and, therefore, the vasoconstrictive state of the vasculature under the control conditions. 3. Further understanding of the control of RBF by RSNA has come from studies that have analysed the underlying rhythms in sympathetic nerve activity and their effect on the cardiovascular system. These studies show that the frequency,response characteristic of the renal vasculature is such that higher frequency oscillations in RSNA (above 0.6 Hz) contribute to setting the mean level of RBF. In comparison, lower frequency oscillations in RSNA can induce cyclic vasoconstriction and dilation in the renal vasculature, thus inducing oscillations in RBF. 4. In summary, the present review discusses the neural control of RBF, summarizing evidence in support of the hypothesis that RBF is under the influence of RSNA across the full range of RSNA. [source]