Home About us Contact | |||
Unsaturated Species (unsaturated + species)
Selected AbstractsRate coefficients and mechanisms of the reaction of cl-atoms with a series of unsaturated hydrocarbons under atmospheric conditionsINTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 8 2003John J. Orlando Rate coefficients and/or mechanistic information are provided for the reaction of Cl-atoms with a number of unsaturated species, including isoprene, methacrolein (MACR), methyl vinyl ketone (MVK), 1,3-butadiene, trans -2-butene, and 1-butene. The following Cl-atom rate coefficients were obtained at 298 K near 1 atm total pressure: k(isoprene) = (4.3 ± 0.6) × 10,10cm3 molecule,1 s,1 (independent of pressure from 6.2 to 760 Torr); k(MVK) = (2.2 ± 0.3) × 10,10 cm3 molecule,1 s,1; k(MACR) = (2.4 ± 0.3) × 10,10 cm3 molecule,1 s,1; k(trans -2-butene) = (4.0 ± 0.5) × 10,10 cm3 molecule,1 s,1; k(1-butene) = (3.0 ± 0.4) × 10,10 cm3 molecule,1 s,1. Products observed in the Cl-atom-initiated oxidation of the unsaturated species at 298 K in 1 atm air are as follows (with % molar yields in parentheses): CH2O (9.5 ± 1.0%), HCOCl (5.1 ± 0.7%), and 1-chloro-3-methyl-3-buten-2-one (CMBO, not quantified) from isoprene; chloroacetaldehyde (75 ± 8%), CO2 (58 ± 5%), CH2O (47 ± 7%), CH3OH (8%), HCOCl (7 ± 1%), and peracetic acid (6%) from MVK; CO (52 ± 4%), chloroacetone (42 ± 5%), CO2 (23 ± 2%), CH2O (18 ± 2%), and HCOCl (5%) from MACR; CH2O (7 ± 1%), HCOCl (3%), acrolein (,3%), and 4-chlorocrotonaldehyde (CCA, not quantified) from 1,3-butadiene; CH3CHO (22 ± 3%), CO2 (13 ± 2%), 3-chloro-2-butanone (13 ± 4%), CH2O (7.6 ± 1.1%), and CH3OH (1.8 ± 0.6%) from trans -2-butene; and chloroacetaldehyde (20 ± 3%), CH2O (7 ± 1%), CO2 (4 ± 1%), and HCOCl (4 ± 1%) from 1-butene. Product yields from both trans -2-butene and 1-butene were found to be O2 -dependent. In the case of trans -2-butene, the observed O2 -dependence is the result of a competition between unimolecular decomposition of the CH3CH(Cl)CH(O,)CH3 radical and its reaction with O2, with kdecomp/kO2 = (1.6 ± 0.4) × 1019 molecule cm,3. The activation energy for decomposition is estimated at 11.5 ± 1.5 kcal mol,1. The variation of the product yields with O2 in the case of 1-butene results from similar competitive reaction pathways for the two ,-chlorobutoxy radicals involved in the oxidation, ClCH2CH(O,)CH2CH3 and ,OCH2CHClCH2CH3. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 334,353, 2003 [source] Phospholipid composition of articular cartilage boundary lubricantJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 4 2001A. V. Sarma The mechanism of lubrication in normal human joints depends on loading and velocity conditions. Boundary lubrication, a mechanism in which layers of molecules separate opposing surfaces, occurs under severe loading. This study was aimed at characterizing the phospholipid composition of the adsorbed molecular layer on the surface of normal cartilage that performs as a boundary lubricant. The different types of phospholipid adsorbed onto the surface of cartilage were isolated by extraction and identified by chromatography on silica gel paper and mass spectroscopy. The main phospholipid classes identified were quantified by a phosphate assay. Gas chromatography and electrospray ionization mass spectrometry were used to further characterize the fatty acyl chains in each major phospholipid component and to identify the molecular species present. Phosphatidylcholine (41%), phosphatidylethanolamine (27%) and sphingomyelin (32%) were the major components of the lipid layer on the normal cartilage surface. For each lipid type, a mixture of fatty acids was detected, with a higher percentage of unsaturated species compared to saturated species. The most abundant fatty acid observed with all three lipid types was oleic acid (C18:1). Additional work to further quantify the molecular species using electrospray ionization mass spectrometry is recommended. © 2001 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved. [source] Unexpected reactions associated with the xanthate-mediated polymerization of N -vinylpyrrolidoneJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 19 2008Gwenaelle Pound Abstract The monomer N -vinylpyrrolidone (NVP) undergoes side reactions in the presence of R group functional xanthates and impurities. The fate of the monomer NVP and a selection of six O -ethyl xanthates during xanthate-mediated polymerization were studied via NMR spectroscopy. A high number of by-products were identified. Significant side reactions affecting NVP include the formation of an unsaturated dimer and hydration products in bulk or in solution in C6D6. In addition, the xanthate adjacent to a NVP unit was found to undergo elimination at moderate temperature (60,70 °C), resulting in unsaturated species and the formation of new xanthate species. The presence of the chlorinated compound ,-chlorophenyl acetic acid, ethyl ester, a precursor in the synthesis of the xanthate S -(2-ethyl phenylacetate) O -ethyl xanthate, resulted in a dramatic increase in the rate of side reactions such as unsaturated dimer formation and a high ratio of unsaturated chain ends. The conditions for the occurrence of such side reactions are discussed in this article, with relevance to increasing the control over the polymerization kinetics, endgroup functionality, and control over the molar mass distribution. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6575,6593, 2008 [source] Selective extraction of polyunsaturated triacylglycerols using a novel ionic liquid precursor immobilized on a mesoporous complexing adsorbentBIOTECHNOLOGY PROGRESS, Issue 5 2009Patrisha J. Pham Abstract Mesoporous silica (SBA-15) synthesized by using Pluronic123 as the structure-directing template was functionalized by imidazolium-based ionic liquid precursors. Silver salts were then immobilized onto the supported ionic liquids using the incipient wetness impregnation technique. The separation of unsaturated species was achieved through the reversible and specific interaction between silver ions and carbon,carbon double bonds. This adsorbent was examined for the selective separation of polyunsaturated triacylglycerols (PUTAG) using High Pressure Liquid Chromatography (HPLC) with Evaporative Light Scattering Detection (ELSD) as the quantification methodology. AgBF4/SBA15·HPSiOEtIM·PF6 showed an adsorption capacity for linolenin of about 217 mg adsorbed/gram of sorbent. This adsorbent had good selectivity and a high capacity for the most highly unsaturated triacylglycerol when applied to a mixture of triacylglycerols with varying degrees of unsaturation. Consequently, a stepwise methodology was also developed to increase the recovery of the adsorbed components. This adsorbent retained its selectivity and capacity when recycled up to five times. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source] |