Unknown Genes (unknown + gene)

Distribution by Scientific Domains


Selected Abstracts


A UVB-hypersensitive mutant in Arabidopsis thaliana is defective in the DNA damage response

THE PLANT JOURNAL, Issue 3 2009
Ayako N. Sakamoto
Summary To investigate UVB DNA damage response in higher plants, we used a genetic screen to isolate Arabidopsis thaliana mutants that are hypersensitive to UVB irradiation, and isolated a UVB-sensitive mutant, termed suv2 (for sensitive to UV 2) that also displayed hypersensitivity to ,-radiation and hydroxyurea. This phenotype is reminiscent of the Arabidopsis DNA damage-response mutant atr. The suv2 mutation was mapped to the bottom of chromosome 5, and contains an insertion in an unknown gene annotated as MRA19.1. RT-PCR analysis with specific primers to MRA19.1 detected a transcript consisting of 12 exons. The transcript is predicted to encode a 646 amino acid protein that contains a coiled-coil domain and two instances of predicted PIKK target sequences within the N-terminal region. Fusion proteins consisting of the predicted MRA19.1 and DNA-binding or activation domain of yeast transcription factor GAL4 interacted with each other in a yeast two-hybrid system, suggesting that the proteins form a homodimer. Expression of CYCB1;1:GUS gene, which encodes a labile cyclin:GUS fusion protein to monitor mitotic activity by GUS activity, was weaker in the suv2 plant after ,-irradiation than in the wild-type plants and was similar to that in the atr plants, suggesting that the suv2 mutant is defective in cell-cycle arrest in response to DNA damage. Overall, these results suggest that the gene disrupted in the suv2 mutant encodes an Arabidopsis homologue of the ATR-interacting protein ATRIP. [source]


An automated in situ hybridization screen in the medaka to identify unknown neural genes

DEVELOPMENTAL DYNAMICS, Issue 3 2005
Carole Deyts
Abstract Despite the fact that a large body of factors that play important roles in development are known, there are still large gaps in understanding the genetic pathways that govern these processes. To find previously unknown genes that are expressed during embryonic development, we optimized and performed an automated whole-mount in situ hybridization screen on medaka embryos at the end of somitogenesis. Partial cDNA sequences were compared against public databases and identified according to similarities found to other genes and gene products. Among 321 isolated genes showing specific expression in the central nervous system in at least one of five stages of development, 55.14% represented genes whose functions are already documented (in fish or other model organisms). Additionally, 16.51% were identified as conserved unknown genes or genes with unknown function. We provide new data on eight of these genes that presented a restricted expression pattern that allowed for formulating testable hypotheses on their developmental roles, and that were homologous to mammalian molecules of unknown function. Thus, gene expression screening in medaka is an efficient tool for isolating new regulators of embryonic development, and can complement genome-sequencing projects that are producing a high number of genes without ascribed functions. Developmental Dynamics 234:698,708, 2005. © 2005 Wiley-Liss, Inc. [source]


Gene expression profiling of the pH response in Shigella flexneri 2a

FEMS MICROBIOLOGY LETTERS, Issue 1 2007
Fan Cheng
Abstract The pH response of Shigella flexneri 2a 301 was identified by gene expression profiling. Gene expression profiles of cells grown in pH 4.5 or 8.6 were compared with the profiles of cells grown at pH 7.0. Differential expression was observed for 307 genes: 97 were acid up-regulated, 102 were acid down-regulated, 91 were base up-regulated, and 86 were base down-regulated. Twenty-seven genes were found to be both acid and base up-regulated, and 29 genes were both acid and base down-regulated. This study showed that (1) the most pH-dependent genes regulate energy metabolism; (2) the RpoS-dependent acid-resistance system is induced, while the glutamate-dependent acid resistance system is not; (3) high pH up-regulates some virulence genes, while low pH down-regulates them, consistent with Shigella infection of the low gut; and (4) several cross-stress response genes are induced by pH changes. These results also illustrate that many unknown genes are significantly regulated under acid or basic conditions, providing researchers with important information to characterize their function. [source]


Upward bias in odds ratio estimates from genome-wide association studies

GENETIC EPIDEMIOLOGY, Issue 4 2007
Chad Garner
Abstract Genome-wide association studies are carried out to identify unknown genes for a complex trait. Polymorphisms showing the most statistically significant associations are reported and followed up in subsequent confirmatory studies. In addition to the test of association, the statistical analysis provides point estimates of the relationship between the genotype and phenotype at each polymorphism, typically an odds ratio in case-control association studies. The statistical significance of the test and the estimator of the odds ratio are completely correlated. Selecting the most extreme statistics is equivalent to selecting the most extreme odds ratios. The value of the estimator, given the value of the statistical significance depends on the standard error of the estimator and the power of the study. This report shows that when power is low, estimates of the odds ratio from a genome-wide association study, or any large-scale association study, will be upwardly biased. Genome-wide association studies are often underpowered given the low , levels required to declare statistical significance and the small individual genetic effects known to characterize complex traits. Factors such as low allele frequency, inadequate sample size and weak genetic effects contribute to large standard errors in the odds ratio estimates, low power and upwardly biased odds ratios. Studies that have high power to detect an association with the true odds ratio will have little or no bias, regardless of the statistical significance threshold. The results have implications for the interpretation of genome-wide association analysis and the planning of subsequent confirmatory stages. Genet Epidemiol. 2007. © 2007 Wiley-Liss, Inc. [source]


Strategies for identifying genes that play a role in spinal cord regeneration

JOURNAL OF ANATOMY, Issue 1 2004
M. Wintzer
Abstract A search for genes that promote or block CNS regeneration requires numerous approaches; for example, tests can be made on individual candidate molecules. Here, however, we describe methods for comprehensive identification of genes up- and down-regulated in neurons that can and cannot regenerate after injury. One problem concerns identification of low-abundance genes out of the 30 000 or so genes expressed by neurons. Another difficulty is knowing whether a single gene or multiple genes are necessary. When microchips and subtractive differential display are used to identify genes turned on or off, the numbers are still too great to test which molecules are actually important for regeneration. Candidates are genes coding for trophic, inhibitory, receptor and extracellular matrix molecules, as well as unknown genes. A preparation useful for narrowing the search is the neonatal opossum. The spinal cord and optic nerve can regenerate after injury at 9 days but cannot at 12 days after birth. This narrow window allows genes responsible for the turning off of regeneration to be identified. As a next step, sites at which they are expressed (forebrain, midbrain, spinal cord, neurons or glia, intracellular or extracellular) must be determined. An essential step is to characterize proteins, their levels of expression, and their importance for regeneration. Comprehensive searches for molecular mechanisms represent a lengthy series of experiments that could help in devising strategies for repairing injured spinal cord. [source]


Expression profile of genes identified in human spermatogonial stem cell-like cells using suppression subtractive hybridization

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2010
Jung Ki Yoo
Abstract Spermatogenesis is the process by which testicular spermatogonial stem cells (SSCs) self-renew and differentiate into mature sperm in the testis. Maintaining healthy spermatogenesis requires proper proliferation of SSCs. In this study, we sought to identify factors that regulate the proliferation of SSCs. Human SSC (hSSC)-like cells were isolated from azoospermic patients by a modified culture method and propagated in vitro. After four to five passages, the SSC-like cells spontaneously ceased proliferating in vitro, so we collected proliferating (P)-hSSC-like cells at passage two and senescent (S)-hSSC-like cells at passage five. Suppression subtractive hybridization (SSH) was used to identify genes that were differentially expressed between the P-hSSC-like and S-hSSC-like cells. We selected positive clones up-regulated in P-hSSC-like cells using SSH and functionally characterized them by reference to public databases using NCBI BLAST tools. Expression levels of genes corresponding to subtracted clones were analyzed using RT-PCR. Finally, we confirmed the differential expression of 128 genes in positive clones of P-hSSC-like cells compared with S-hSSC-like cells and selected 23 known and 39 unknown clones for further study. Known genes were associated with diverse functions; 22% were related to metabolism. Fifteen of the known genes and two of the unknown genes were down-regulated after senescence of hSSC-like cells. A comparison with previous reports further suggests that known genes selected, SPP1, may be related to germ cell biogenesis and cellular proliferation. Our findings identify several potential novel candidate biomarkers of proliferating- and senescencet-hSSCs, and they provide potentially important insights into the function and characteristics of human SSCs. J. Cell. Biochem. 110: 752,762, 2010. © 2010 Wiley-Liss, Inc. [source]


Isolation of salt-sensitive mutants from Sinorhizobium meliloti and characterization of genes involved in salt tolerance

LETTERS IN APPLIED MICROBIOLOGY, Issue 3 2004
W. Wei
Abstract Aims:, The purpose of our research is to isolate salt-sensitive mutants and to study the genes involved in salt tolerance of the salt-tolerant bacterium Sinorhizobium meliloti 042BM. Methods:, Wild type S. meliloti 042BM bacteria are able to grow at a NaCl concentration of 0.6 mol l,1. A transposon Tn5-1063a mutagenesis library of S. meliloti 042BM was constructed and eight salt-sensitive mutants were isolated, which were unable to growth on FY plates containing 0.4 mol l,1 NaCl. Significance:, Our interest is to provide information about the mechanism of salt tolerance in bacteria by studying the genes involved in salt tolerance. Here, seven different genes were identified. These genes include omp10 encoding a cell outer membrane protein, relA encoding (p)ppGpp synthetase, greA encoding a transcription cleavage factor, nuoL encoding NADH dehydrogenase I chain L transmembrane protein, a putative nuclease/helicase gene and two unknown genes. Based on these findings, we suggest that the regulation of salt tolerance of S. meliloti 042BM is complex and on several levels. [source]


MicroRNAs, the epigenetic memory and climatic adaptation in Norway spruce

NEW PHYTOLOGIST, Issue 4 2010
Igor A. Yakovlev
Summary ,Norway spruce expresses a temperature-dependent epigenetic memory from the time of embryo development, which thereafter influences the timing bud phenology. MicroRNAs (miRNAs)are endogenous small RNAs, exerting epigenetic gene regulatory impacts. We have tested for their presence and differential expression. ,We prepared concatemerized small RNA libraries from seedlings of two full-sib families, originated from seeds developed in a cold and warm environment. One family expressed distinct epigenetic effects while the other not. We used available plant miRNA query sequences to search for conserved miRNAs and from the sequencing we found novel ones; the miRNAs were monitored using relative real time-PCR. ,Sequencing identified 24 novel and four conserved miRNAs. Further screening of the conserved miRNAs confirmed the presence of 16 additional miRNAs. Most of the miRNAs were targeted to unknown genes. The expression of seven conserved and nine novel miRNAs showed significant differences in transcript levels in the full-sib family showing distinct epigenetic difference in bud set, but not in the nonresponding full-sib family. Putative miRNA targets were studied. ,Norway spruce contains a set of conserved miRNAs as well as a large proportion of novel nonconserved miRNAs. The differentially expression of specific miRNAs indicate their putative participation in the epigenetic regulation. [source]


Contributions of disease resistance and escape to the control of septoria tritici blotch of wheat

PLANT PATHOLOGY, Issue 5 2009
L. S. Arraiano
The contributions of disease escape and disease resistance to the responses of wheat to septoria tritici leaf blotch (STB) were analysed in a set of 226 lines, including modern cultivars, breeding lines and their progenitors dating back to the origin of scientific wheat breeding. Field trials were located in the important wheat-growing region of eastern England and were subject to natural infection by Mycosphaerella graminicola. STB scores were related to disease-escape traits, notably height, leaf spacing, leaf morphology and heading date, and to the presence of known Stb resistance genes and isolate-specific resistances. The Stb6 resistance gene was associated with a reduction of 19% in the level of STB in the complete set of 226 lines and with a 33% reduction in a subset of 139 lines of semidwarf stature. Greater plant height was strongly associated with reduced STB in the full set of lines, but only weakly in the semidwarf lines. Shorter leaf length was also associated with reduced STB, but, in contrast to earlier reports, lines with more prostrate leaves had more STB on average, probably because they tended to have longer leaves. Several lines, notably cvs Pastiche and Exsept, had low mean levels of STB which could not be explained by either escape traits or specific resistance genes, implying that they have unknown genes for partial resistance to STB. [source]


Characterisation of gene expression in bovine adipose tissue before and after fattening

ANIMAL GENETICS, Issue 3 2000
M Oishi
Summary It has been reported that fattening causes bovine adipose tissue development associated with an enlargement in adipocyte cell size. As a first study to elucidate mechanisms of bovine adipose tissue development during fattening, our experiment was designed to characterise gene expression in bovine adipose tissue before and after fattening. We randomly isolated a large number of cDNA clones derived from bovine adipose tissue before and after fattening. Sequence analysis of the isolated clones showed that 3 and 10 clones from before and after fattening, respectively, correspond to genes related to adipocyte development and/or function in the adipose tissue. In addition, we isolated cDNA clones that possess negative signal by hybridising the cDNA population from the adipose tissue after fattening with that before fattening as a probe. As a result, we identified five types of transcripts observed in the adipose tissue after fattening but not before fattening. Two of the five are likely to encode bovine orthologs of phospholipase A2 and RNA helicase p68, while the other three represent unknown genes. Further functional investigation of the identified genes might lead to elucidation of mechanisms of bovine adipose tissue development during fattening. [source]


Identifications of expressed sequence tags from Pacific threadfin (Polydactylus sexfilis) skeletal muscle cDNA library

AQUACULTURE RESEARCH, Issue 4 2010
Shizu Watanabe
Abstract Pacific threadfin (Polydactylus sexfilis), locally known as Moi, is a desirable fish for aquaculture and recreational fishing. To understand the basic mechanism of muscle formation and its impacts on flesh quality, we established a cDNA library using mRNA of the skeletal muscle tissue from fingerlings. The library size was 1.1 × 108 plaque forming units mg,1 and the percentage of recombinant clones was >81%. A pilot sequencing project from 181 clones identified 129 useful expressed sequence tags (ESTs), of which 90 ESTs exhibited significant homology to known genes and 39 ESTs have low homologies to unknown genes by blast algorithm. The most abundant EST from the pilot sequence data is nikotinamide riboside kinase 2 (59 times), followed by 60S ribosomal protein L24 (12 times) and ribosomal protein L8 (5 times). Fourteen novel genes were retrieved from the sequenced clones and subjected to gene ontology annotation. Four mRNA sequences were identified as significant regulators of transcription, including Not2p, Tsc22 domain family 2, LIM domain binding factor 3 and mesenchyme homeobox 2. These results suggest that the muscle cDNA library is an useful source for identifying EST sequences of Pacific threadfin. [source]