Ultrastructural Analysis (ultrastructural + analysis)

Distribution by Scientific Domains
Distribution within Medical Sciences


Selected Abstracts


Histologic and Ultrastructural Analysis of Ultraviolet B Laser and Light Source Treatment of Leukoderma in Striae Distensae

DERMATOLOGIC SURGERY, Issue 4 2005
David J. Goldberg MD
Background. Lasers and light sources emitting ultraviolet B (UVB) irradiation have been shown to repigment striae distensae. Objective. The purpose of this study was to analyze the histologic and ultrastuctural changes seen after UVB laser, or light source,induced repigmentation of striae distensae. Methods. Ten subjects with hypopigmented striae were selected. Five subjects were treated with an XeCl excimer UVB laser, and five subjects were treated with a UVB light device. Six months after the final treatment, the biopsies were evaluated for both standard and electron microscopic changes in melanocytes. Results. Analyses of biopsied skin after treatment with both the UVB laser and light source showed increased melanin content, hypertrophy of melanocytes, and an increase in the number of melanocytes in all patients. Conclusions. Repigmentation of striae distensae with either a UVB laser or light source is due to an increase in melanin pigment, hypertrophy of melanocytes, and an increase in melanocytes. DAVID J. GOLDBERG, MD, ELLEN S. MARMUR, MD, CHRYSALINE SCHMULTS, MD, MUSSARRAT HUSSAIN, MD, AND ROBERT PHELPS, MD, HAVE INDICATED NO SIGNIFICANT INTEREST WITH COMMERCIAL SUPPORTERS. [source]


Histological and Ultrastructural Analysis of White Matter Damage after Naturally-occurring Spinal Cord Injury

BRAIN PATHOLOGY, Issue 2 2006
Peter M. Smith
Detailed analysis of the structural changes that follow human clinical spinal cord injury is limited by difficulties in achieving adequate tissue fixation. This study bypasses this obstacle by examining the spinal cord from paraplegic domestic animals, enabling us to document the ultrastructural changes at different times following injury. In all but one case, injury resulted from a combination of contusion and compression. There was infarction and hemorrhage, followed by gray matter destruction and the rapid development of a variety of white matter changes including axon swelling and myelin degeneration. Axons greater than 5 µm in diameter were more susceptible to degenerative changes, whereas smaller axons, particularly those in the subpial region, were relatively well preserved. Demyelinated axons were seen within 2 weeks after injury and, at later time points, both Schwann cell and oligodendrocyte remyelination was common. More subtle white matter abnormalities were identified by examining sagittal sections, including focal accumulation of organelles in the axoplasm and partial and paranodal myelin abnormalities. These observations serve to validate observations from experimental models of spinal contusion but also highlight the complexity of naturally occurring (ie, clinical) spinal injury. They also raise the possibility that focal abnormalities such as paranodal demyelination may contribute to early axonal dysfunction and possibly to progressive tissue damage. [source]


Morphological changes in mouse embryos cryopreserved by different techniques

MICROSCOPY RESEARCH AND TECHNIQUE, Issue 4 2007
A.R.S. Coutinho
Abstract Cryopreservation of mammalian embryos is an important tool for the application of reproductive biotechnologies. Subjective evaluation to determine embryo viability is often used. The determination of the best cryopreservation protocol depends on morphological and molecular analysis of cellular injuries. The main objective of this study was to compare two methods of cryopreservation by assessing morphological alterations of frozen embryos using light, fluorescence, and transmission electron microscope. Fresh (control), slow frozen, and vitrified mouse embryos were composed. To evaluate the viability of the embryos, the cell membrane integrity was assessed using Hoechst33342 and propidium iodide (H/PI) staining. Morphological analyses using hematoxylin and eosin (HE) staining were performed to test different techniques (in situ, paraffin, and historesin) by both light and fluorescence microscopy. Transmission electron microscope was used to detect ultrastructural alterations in Spurr- and Araldite-embedded samples. H/PI staining detected more membrane permeability in the vitrification (69.8%) than in the slow freezing (48.4%) or control (13.8%) groups (P < 0.001). Historesin-embedded samples showed to be more suitable for morphological analyses because cellular structures were better identified. Nuclear evaluation in historesin sections showed the induction of pycnosis in slow freezing and vitrification groups. Cytoplasm evaluation revealed a condensation and an increase in eosinophilic intensity (indicating apoptosis) in the slow freezing group, and weakly eosinophilic structures and degenerated cells (indicating oncosis) in the vitrification group (P < 0.05). Ultrastructural analyses confirmed HE morphological findings. It was concluded that both cryopreservation techniques resulted in oncosis and apoptosis injuries. However, vitrification caused more severe cellular alterations and reduced embryonic viability compared to slow freezing. Microsc. Res. Tech., 2007. © 2006 Wiley-Liss, Inc. [source]


Loss-of-function mutations and inducible RNAi suppression of Arabidopsis LCB2 genes reveal the critical role of sphingolipids in gametophytic and sporophytic cell viability

THE PLANT JOURNAL, Issue 2 2008
Charles R. Dietrich
Summary Serine palmitoyltransferase (SPT) catalyzes the first step in sphingolipid biosynthesis, and downregulation of this enzyme provides a means for exploring sphingolipid function in cells. We have previously demonstrated that Arabidopsis SPT requires LCB1 and LCB2 subunits for activity, as is the case in other eukaryotes. In this study, we show that Arabidopsis has two genes (AtLCB2a and AtLCB2b) that encode functional isoforms of the LCB2 subunit. No alterations in sphingolipid content or growth were observed in T-DNA mutants for either gene, but homozygous double mutants were not recoverable, suggesting that these genes are functionally redundant. Reciprocal crosses conducted with Atlcb2a and Atlcb2b mutants indicated that lethality is associated primarily with the inability to transmit the lcb2 null genotype through the haploid pollen. Consistent with this, approximately 50% of the pollen obtained from plants homozygous for a mutation in one gene and heterozygous for a mutation in the second gene arrested during transition from uni-nucleate microspore to bicellular pollen. Ultrastructural analyses revealed that these pollen grains contained aberrant endomembranes and lacked an intine layer. To examine sphingolipid function in sporophytic cells, Arabidopsis lines were generated that allowed inducible RNAi silencing of AtLCB2b in an Atlcb2a mutant background. Studies conducted with these lines demonstrated that sphingolipids are essential throughout plant development, and that lethality resulting from LCB2 silencing in seedlings could be partially rescued by supplying exogenous long-chain bases. Overall, these studies provide insights into the genetic and biochemical properties of SPT and sphingolipid function in Arabidopsis. [source]


Programmed cell death of the ovarian nurse cells during oogenesis of the silkmoth Bombyx mori

DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 7 2006
Vicky E. Mpakou
In the present study, we describe the features of programmed cell death of the ovarian nurse cells occurring during vitellogenesis of the silkmoth Bombyx mori. At developmental stage 5, the nurse cells occupy one-half of the follicular volume and obtain a rather spherical shape, while the nurse cell nuclei appear large and elongated, forming impressive projections. At the following stage, stage 6, the nurse cells decrease in size and their shape becomes elliptic. The nuclei remain elongated, being also characterized by large lobes. The lobes of the ramified nurse cell nuclei seem to retain the nucleus in the center of the cell during the dumping of the nurse cell cytoplasm into the growing oocyte. At stage 7, membrane enclosed vacuoles can be easily detected into the nurse cells cytoplasm. Ultrastructural analysis and fluorescent microscopy using mono-dansyl-cadaverine staining of these vacuoles also reveal that they represent autolysosomes. Caspase activity is detected during stage 7, as it is demonstrated by using the Red-VAD-FMK staining reagent. At developmental stages 8 and 9, the nurse cells exhibit chromatin condensation, DNA fragmentation and caspase activity. Finally, during the following stage 10, the nuclear remnants are assembled into apoptotic vesicles, which, after being phagocytosed, are observed in the cytoplasm of adjacent follicle cells. We propose that apoptosis and autophagy operate synergistically during vitellogenesis of B. mori, in order to achieve an efficient and rapid clearance of the degenerated nurse cell cluster. [source]


Ultrastructural analysis of the smooth-to-striated transition zone in the developing mouse esophagus: Emphasis on apoptosis of smooth and origin and differentiation of striated muscle cells

DEVELOPMENTAL DYNAMICS, Issue 3 2005
Jürgen Wörl
Abstract The exact mechanism of smooth-to-striated muscle conversion in the mouse esophagus is controversial. Smooth-to-striated muscle cell transdifferentiation vs. distinct differentiation pathways for both muscle types were proposed. Main arguments for transdifferentiation were the failure to detect apoptotic smooth and the unknown origin of striated muscle cells during esophageal myogenesis. To reinvestigate this issue, we analyzed esophagi of 4-day-old mice by electron microscopy and a fine-grained sampling strategy considering that, in perinatal esophagus, the replacement of smooth by striated muscle progresses craniocaudally, while striated myogenesis advances caudocranially. We found numerous (1) apoptotic smooth muscle cells located mainly in a transition zone, where smooth intermingled with developing striated muscle cells, and (2) mesenchymal cells in the smooth muscle portion below the transition zone, which appeared to give rise to striated muscle fibers. Taken together, these results provide further evidence for distinct differentiation pathways of both muscle types during esophagus development. Developmental Dynamics 233:964,982, 2005. © 2005 Wiley-Liss, Inc. [source]


Synthesis and function of the fibrous layers covering the eggs of Siphlonurus lacustris (Ephemeroptera, Siphlonuridae)

ACTA ZOOLOGICA, Issue 1 2001
Elda Gaino
Abstract Ultrastructural analysis (transmission and electron scanning microscopy) of the eggs of the mayfly Siphlonurus lacustris (Eaton) showed that they are wrapped in a thick coat composed of a network of tightly entwined filaments. Groups of twisted filaments form slightly uplifted buttons that are scattered on the coat surface. After experimentally induced egg deposition, egg,water interaction promotes marked cohesion of the eggs and their firm adhesion to the substrate. Egg masses include numerous gametes; the covering of those located close to the substrate greatly extends to anchor the whole mass. Eggs removed from the coat reveal a slightly punctuated smooth chorion and tagenoform micropyles (three to five). The coat increases egg size by about 20%. The lack of female reproductive accessory glands in Ephemeroptera transfers the synthesis of the adhesive coats to the follicle cells, which are typically competent for insect egg shell deposition (vitelline envelope and chorionic layers). This covering results from electron-dense granules that give rise to filaments progressively organized to form superimposed layers variously orientated around the egg. In addition to egg adhesion to the substrate, a trophic function and protection from shear stress are postulated for this covering. [source]


Two populations of glutamatergic axons in the rat dorsal raphe nucleus defined by the vesicular glutamate transporters 1 and 2

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2005
Kathryn G. Commons
Abstract Most glutamatergic neurons in the brain express one of two vesicular glutamate transporters, vGlut1 or vGlut2. Cortical glutamatergic neurons highly express vGlut1, whereas vGlut2 predominates in subcortical areas. In this study immunohistochemical detection of vGlut1 or vGlut2 was used in combination with tryptophan hydroxylase (TPH) to characterize glutamatergic innervation of the dorsal raphe nucleus (DRN) of the rat. Immunofluorescence labeling of both vGlut1 and vGlut2 was punctate and homogenously distributed throughout the DRN. Puncta labeled for vGlut2 appeared more numerous then those labeled for vGlut1. Ultrastructural analysis revealed axon terminals containing vGlut1 and vGlut2 formed asymmetric-type synapses 80% and 95% of the time, respectively. Postsynaptic targets of vGlut1- and vGlut2-containing axons differed in morphology. vGlut1-labeled axon terminals synapsed predominantly on small-caliber (distal) dendrites (42%, 46/110) or dendritic spines (46%, 50/110). In contrast, vGlut2-containing axons synapsed on larger caliber (proximal) dendritic shafts (> 0.5 µm diameter; 48%, 78/161). A fraction of both vGlut1- or vGlut2-labeled axons synapsed onto TPH-containing dendrites (14% and 34%, respectively). These observations reveal that different populations of glutamate-containing axons innervate selective dendritic domains of serotonergic and non-serotonergic neurons, suggesting they play different functional roles in modulating excitation within the DRN. [source]


Activity-dependent modulation of GABAergic synapses in developing rat spinal networks in vitro

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2002
Marcelo Rosato-Siri
Abstract The role of activity-dependent plasticity in modulating inhibitory synapses was investigated in embryonic rat spinal cord slice cultures, by chronic exposure to non-NMDA receptor blockers. GABAergic synaptic efficacy in control and chronic-treated cultures was investigated by patch-recordings from visually identified spinal interneurons. In both culture groups proximal stimulation induced the appearance of postsynaptic currents (PSCs), which were fully antagonized by 20 µM bicuculline application and reverse polarity at potential values close to those reported for spontaneous GABAergic PSCs. In chronically treated cells GABAergic evoked PSCs displayed a larger failure rate and a smaller coefficient of variation of mean PSC amplitude, when compared to controls. As opposed to controls, chronic GABAergic evoked PSCs did not facilitate upon paired-pulse stimulation. Facilitation at chronic synapses was observed when extracellular calcium levels were decreased below physiological values (< 2 mM). Kainate was used to disclose any functional differences between control and treated slices. In accordance with the presynaptic action of kainate, the application of this drug along with GYKI, an AMPA receptor selective antagonist, changed, with analogous potency, short-term plasticity of GABAergic synapses from control and treated cultures. Nevertheless, in chronic cultures, the downstream effects of such activation unmasked short-term depression. Ultrastructural analysis of synapses in chronically treated cultures showed a reduction both in symmetric synapses and in the number of vesicles at symmetric terminals. Thus, based on electrophysiological and ultrastructural data, it could be suggested that during the development of spinal circuits, GABAergic synapses are modulated by glutamatergic transmission, and thus implying that excitatory transmission regulates the strength of GABAergic synapses. [source]


Chronic nicotine treatment changes the axonal distribution of 68 kDa neurofilaments in the rat ventral tegmental area

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2002
Andrea Sbarbati
Abstract Region-specific decreases of neurofilament proteins (NF) were described in the ventral tegmental area (VTA) of rats treated chronically with morphine, cocaine or alcohol. In a previous study, we demonstrated that NF levels were also changed in the VTA after chronic treatment with nicotine. The aim of this study was to clarify the submicroscopic basis of decreased immunoreactivity for NF-68, NF-160 and NF-200, as determined by using NR4, BF10 and RT97 antibodies, respectively. Microdensitometric analysis of brain sections showed that immunoreactivity for all NF was reduced in the VTA of animals exposed chronically to nicotine (0.4 mg/kg per day, 6 days of treatment), when compared to rats exposed to saline. Reduction in immunoreactivity was significant for NF-68 (P < 0.05), NF-160 (P < 0.01) and NF-200 (P < 0.05), showing a relative reduction of 34%, 42% and 38%, respectively, when compared to saline-treated rats. No difference was observed for any of the NF under study when immunoreactivity measurements in the substantia nigra were compared. Ultrastructural analysis was applied to evaluate changes in NF-68, NF-160 and NF-200 immunoreactivity in regions of the VTA that contain dopaminergic neurons following chronic nicotine treatment. At the electron microscopic level, no degenerative changes were found in neurons or glial cells of the VTA. With ultrastructural immunohistochemistry, evaluation of the homogeneity parameter of NF distribution showed a loss of homogeneity for NF-68 linked to the nicotine treatment. In areas in which NF organization appeared well preserved, analysis of the numerical density of NF revealed no significant difference for NF-68 (897/µm2 vs. 990/µm2), NF-160 (970/µm2 vs. 820/µm2) and NF-200 (1107/µm2 vs. 905/µm2) in nicotine-treated rats when compared to saline-treated rats. These results confirm that nicotine shares the same properties with cocaine and morphine in reducing NF in the VTA, a key brain structure of the rewards system, and that chronic nicotine treatment changes the axonal distribution of 68 kDa neurofilaments in the rat VTA. [source]


Nodal protrusions, increased Schmidt-Lanterman incisures, and paranodal disorganization are characteristic features of sulfatide-deficient peripheral nerves

GLIA, Issue 6 2007
Tomiko Hoshi
Abstract Galactocerebroside and sulfatide are two major glycolipids in myelin; however, their independent functions are not fully understood. The absence of these glycolipids causes disruption of paranodal junctions, which separate voltage-gated Na+ and Shaker -type K+ channels in the node and juxtaparanode, respectively. In contrast to glial cells in the central nervous system (CNS), myelinating Schwann cells in the peripheral nervous system (PNS) possess characteristic structures, including microvilli and Schmidt-Lanterman incisures, in addition to paranodal loops. All of these regions are involved in axo,glial interactions. In the present study, we examined cerebroside sulfotransferase-deficient mice to determine whether sulfatide is essential for axo,glial interactions in these PNS regions. Interestingly, marked axonal protrusions were observed in some of the nodal segments, which often contained abnormally enlarged vesicles, like degenerated mitochondria. Moreover, many transversely cut ends of microvilli surrounded the mutant nodes, suggesting that alignments of the microvilli were disordered. The mutant PNS showed mild elongation of nodal Na+ channel clusters. Even though Caspr and NF155 were completely absent in half of the paranodes, short clusters of these molecules remained in the rest of the paranodal regions. Ultrastructural analysis indicated the presence of transverse bands in some paranodal regions and detachment of the outermost several loops. Furthermore, the numbers of incisures were remarkably increased in the mutant internode. Therefore, these results indicate that sulfatide may play an important role in the PNS, especially in the regions where myelin,axon interactions occur. © 2007 Wiley-Liss, Inc. [source]


The Bone Lining Cell: Its Role in Cleaning Howship's Lacunae and Initiating Bone Formation

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 1 2002
V. Everts
Abstract In this study we investigated the role of bone lining cells in the coordination of bone resorption and formation. Ultrastructural analysis of mouse long bones and calvariae revealed that bone lining cells enwrap and subsequently digest collagen fibrils protruding from Howship's lacunae that are left by osteoclasts. By using selective proteinase inhibitors we show that this digestion depends on matrix metalloproteinases and, to some extent, on serine proteinases. Autoradiography revealed that after the bone lining cells have finished cleaning, they deposit a thin layer of a collagenous matrix along the Howship's lacuna, in close association with an osteopontin-rich cement line. Collagenous matrix deposition was detected only in completely cleaned pits. In bone from pycnodysostotic patients and cathepsin K-deficient mice, conditions in which osteoclastic bone matrix digestion is greatly inhibited, bone matrix leftovers proved to be degraded by bone lining cells, thus indicating that the bone lining cell "rescues" bone remodeling in these anomalies. We conclude that removal of bone collagen left by osteoclasts in Howship's lacunae is an obligatory step in the link between bone resorption and formation, and that bone lining cells and matrix metalloproteinases are essential in this process. [source]


Adult human spinal cord harbors neural precursor cells that generate neurons and glial cells in vitro

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 9 2008
C. Dromard
Abstract Adult human and rodent brains contain neural stem and progenitor cells, and the presence of neural stem cells in the adult rodent spinal cord has also been described. Here, using electron microscopy, expression of neural precursor cell markers, and cell culture, we investigated whether neural precursor cells are also present in adult human spinal cord. In well-preserved nonpathological post-mortem human adult spinal cord, nestin, Sox2, GFAP, CD15, Nkx6.1, and PSA-NCAM were found to be expressed heterogeneously by cells located around the central canal. Ultrastructural analysis revealed the existence of immature cells close to the ependymal cells, which display characteristics of type B and C cells found in the adult rodent brain subventricular region, which are considered to be stem and progenitor cells, respectively. Completely dissociated spinal cord cells reproducibly formed Sox2+ nestin+ neurospheres containing proliferative precursor cells. On differentiation, these generate glial cells and ,-aminobutyric acid (GABA)-ergic neurons. These results provide the first evidence for the existence in the adult human spinal cord of neural precursors with the potential to differentiate into neurons and glia. They represent a major interest for endogenous regeneration of spinal cord after trauma and in degenerative diseases. © 2008 Wiley-Liss, Inc. [source]


Intraventricular metaplastic meningioma in a child: case report and review of the literature

NEUROPATHOLOGY, Issue 6 2009
Mohanpal Singh Dulai
Childhood meningiomas are rare and display important differences from adult forms. We report the first case of an intraventricular metaplastic meningioma arising in a child. A 7-year-old female underwent resection of an enhancing tumor arising within the left lateral ventricle. It was composed of monomorphic cells embedded within an abundant myxoid stroma. The cells demonstrated epithelial membrane antigen and vimentin immunoreactivity. Ultrastructural analysis demonstrated intermediate filaments, complex intercellular interdigitations and desmosomes, and a diagnosis of myxoid (metaplastic) meningioma was rendered. This case reflects the higher incidence of intraventricular meningiomas in childhood and greater incidence of intraventricular meningiomas in the left lateral ventricle. Recognition of the grade I myxoid meningioma in this case is paramount since chordoid meningiomas, which share similar histologic features, are of a higher grade and worse prognosis. [source]


The Role of Melanocortin-1 Receptor Polymorphism in Skin Cancer Risk Phenotypes

PIGMENT CELL & MELANOMA RESEARCH, Issue 3 2003
Richard A. Sturm
We have examined melanocortin-1 receptor (MC1R) variant allele frequencies in the general population and in a collection of adolescent dizygotic and monozygotic twins to determine statistical associations of pigmentation phenotypes with increased skin cancer risk. This included hair and skin color, freckling, mole count and sun exposed skin reflectance. Nine variants were studied and designated as either strong R (OR = 63; 95% CI 32,140) or weak r (OR = 5; 95% CI 3,11) red hair alleles. Penetrance of each MC1R variant allele was consistent with an allelic model where effects were multiplicative for red hair but additive for skin reflectance. To assess the interaction of the brown eye color gene BEY2/OCA2 on the phenotypic effects of variant MC1R alleles we imputed OCA2 genotype in the twin collection. A modifying effect of OCA2 on MC1R variant alleles was seen on constitutive skin color, freckling and mole count. In order to study the individual effects of these variants on pigmentation phenotype we have established a series of human primary melanocyte strains genotyped for the MC1R receptor. These include strains which are MC1R wild-type consensus, variant heterozygotes, and homozygotes for strong R alleles Arg151Cys and Arg160Trp. Ultrastructural analysis demonstrated that only consensus strains contained stage III and IV melanosomes in their terminal dendrites whereas Arg151Cys and Arg160Trp homozygous strains contained only immature stage I and II melanosomes. Such genetic association studies combined with the functional analysis of MC1R variant alleles in melanocytic cells should provide a link in understanding the association between pigmentary phototypes and skin cancer risk. [source]


Cellular interactions between axon terminals containing endogenous opioid peptides or corticotropin-releasing factor in the rat locus coeruleus and surrounding dorsal pontine tegmentum

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 4 2003
S.I. Tjoumakaris
Abstract Recent evidence suggests that certain stressors release both endogenous opioids and corticotropin-releasing factor (CRF) to modulate activity of the locus coeruleus (LC)-norepinephrine (NE) system. In ultrastructural studies, axon terminals containing methionine5 -enkephalin (ENK) or CRF have been shown to target LC dendrites. These findings suggested the hypothesis that both neuropeptides may coexist in common axon terminals that are positioned to have an impact on the LC. This possibility was examined by using immunofluorescence and immunoelectron microscopic analysis of the rat LC and neighboring dorsal pontine tegmentum. Ultrastructural analysis indicated that CRF- and ENK-containing axon terminals were abundant in similar portions of the neuropil and that approximately 16% of the axon terminals containing ENK were also immunoreactive for CRF. Dually labeled terminals were more frequently encountered in the "core" of the LC vs. its extranuclear dendritic zone, which included the medial parabrachial nucleus (mPB). Triple labeling for ENK, CRF, and tyrosine hydroxylase (TH) showed convergence of opioid and CRF axon terminals with noradrenergic dendrites as well as evidence for inputs to TH-labeled dendrites from dually labeled opioid/CRF axon terminals. One potential source of ENK and CRF in the dorsal pons is the central nucleus of the amygdala (CNA). To determine the relative contribution of ENK and CRF terminals from the CNA, the CNA was electrolytically lesioned. Light-level densitometry revealed robust decreases in CRF immunoreactivity in the LC and mPB on the side ipsilateral to the lesion but little or no change in ENK immunoreactivity, confirming previous studies of the mPB. Degenerating terminals from the CNA in lesioned rats were found to be in direct contact with TH-labeled dendrites. Together, these data indicate that ENK and CRF may be colocalized to a subset of individual axon terminals in the LC "core." The finding that the CNA provides, to dendrites in the area examined, a robust CRF innervation, but little or no opioid innervation, suggests that ENK and CRF axon terminals impacting LC neurons originate from distinct sources and that terminals that colocalize ENK and CRF are not from the CNA. J. Comp. Neurol. 466:445,456, 2003. © 2003 Wiley-Liss, Inc. [source]


,-enolase deficiency, a new metabolic myopathy of distal glycolysis

ANNALS OF NEUROLOGY, Issue 2 2001
Giacomo P. Comi MD
A severe muscle enolase deficiency, with 5% of residual activity, was detected in a 47-year-old man affected with exercise intolerance and myalgias. No rise of serum lactate was observed with the ischemic forearm exercise. Ultrastructural analysis showed focal sarcoplasmic accumulation of glycogen , particles. The enzyme enolase catalyzes the interconversion of 2-phosphoglycerate and phosphoenolpyruvate. In adult human muscle, over 90% of enolase activity is accounted for by the ,-enolase subunit, the protein product of the ENO3 gene. The ,-enolase protein was dramatically reduced in the muscle of our patient, by both immunohistochemistry and immunoblotting, while ,-enolase was normally represented. The ENO3 gene of our patient carries two heterozygous missense mutations affecting highly conserved amino acid residues: a G467A transition changing a glycine residue at position 156 to aspartate, in close proximity to the catalytic site, and a G1121A transition changing a glycine to glutamate at position 374. These mutations were probably inherited as autosomal recessive traits since the mother was heterozygous for the G467A and a sister was heterozygous for the G1121A transition. Our data suggest that ENO3 mutations result in decreased stability of mutant ,-enolase. Muscle ,-enolase deficiency should be considered in the differential diagnosis of metabolic myopathies due to inherited defects of distal glycolysis. [source]


Disruption of tight junction structure in salivary glands from Sjögren's syndrome patients is linked to proinflammatory cytokine exposure

ARTHRITIS & RHEUMATISM, Issue 5 2010
Patricia Ewert
Objective Disorganization of acinar cell apical microvilli and the presence of stromal collagen in the acinar lumen suggest that the labial salivary gland (LSG) barrier function is impaired in patients with Sjögren's syndrome. Tight junctions define cell polarity and regulate the paracellular flow of ions and water, crucial functions of acinar cells. This study was undertaken to evaluate the expression and localization of tight junction proteins in LSGs from patients with SS and to determine in vitro the effects of tumor necrosis factor , (TNF,) and interferon-, (IFN,) on tight junction integrity of isolated acini from control subjects. Methods Twenty-two patients and 15 controls were studied. The messenger RNA and protein levels of tight junction components (claudin-1, claudin-3, claudin-4, occludin, and ZO-1) were determined by semiquantitative reverse transcriptase,polymerase chain reaction and Western blotting. Tight junction protein localization was determined by immunohistochemistry. Tight junction ultrastructure was examined by transmission electron microscopy. Isolated acini from control subjects were treated with TNF, and IFN,. Results Significant differences in tight junction protein levels were detected in patients with SS. ZO-1 and occludin were strongly down-regulated, while claudin-1 and claudin-4 were overexpressed. Tight junction proteins localized exclusively to apical domains in acini and ducts of LSGs from controls. In SS patients, the ZO-1 and occludin the apical domain presence of decreased, while claudin-3 and claudin-4 was redistributed to the basolateral plasma membrane. Exposure of isolated control acini to TNF, and IFN, reproduced these alterations in vitro. Ultrastructural analysis associated tight junction disorganization with the presence of endocytic vesicles containing electron-dense material that may represent tight junction components. Conclusion Our findings indicate that local cytokine production in LSGs from SS patients may contribute to the secretory gland dysfunction observed in SS patients by altering tight junction integrity of epithelial cells, thereby decreasing the quality and quantity of saliva. [source]


Ultrastructure of ulvan: A polysaccharide from green seaweeds

BIOPOLYMERS, Issue 8 2009
Audrey Robic
Abstract Ultrastructural analysis of the gel forming green seaweed sulfated polysaccharide ulvan revealed a spherical-based morphology (10,18 nm diameter) more or less aggregated in aqueous solution. At pH 13 in TBAOH (tetrabutyl ammonium hydroxyde) or NaOH, ulvan formed an open gel-like structure or a continuous film by fusion or coalescence of bead-like structures, while in acidic pH conditions, ulvan appeared as dispersed beads. Low concentrations of sodium chloride, copper or boric acid induced the formation of aggregates. These results highlight the hydrophobic and aggregative behavior of ulvan that are discussed in regard to the peculiar gel formation and the low intrinsic viscosity of the polysaccharide in aqueous solution. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 652,664, 2009. This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source]


Cytologic feature by squash preparation of pineal parenchyma tumor of intermediate differentiation

DIAGNOSTIC CYTOPATHOLOGY, Issue 10 2008
Keiji Shimada M.D., Ph.D.
Abstract Pineal parenchyma tumor of intermediate differentiation (PPTID) is a very rare intracranial tumor, and pathological investigation limited to immunohistological and ultrastructural analyses have been published to date. Although intraoperative cytology is one of the important approaches for initial diagnosis in brain tumors, no or little studies on cellular morphology of PPTID have been demonstrated due to its rarity. We report here cytological features of PPTID obtained from stereotactic surgical specimens in a case of 27-year-old female manifested by dizziness and diplopia. Brain MRI revealed an unhomogeneously enhanced, large-sized tumor (56 × 52 × 60 mm) mainly located in the pineal region expanding from the midbrain to superior portion of the cerebellum and the fourth ventricle. Squash cytology showed increased nucleocytoplasmic ratio, hyperchromatic nuclei, and small rosette-like cell cluster but cellular pleomorphism was mild to moderate and necrotic background was not observed. Histology showed high cellularity, moderate nuclear atypia, and small rosette formation but neither bizarre tumor cells nor necrosis was present. Mitotic counts were very low (less than 1 per 10 high-power fields) and the MIB-1 labeling index was relatively high (10.1%). Tumor cells were immunohistochemically positive for neural markers such as synaptophysin, neurospecific enolase but not for glial fibrillary acidic protein or S-100. In some parts, cells were strongly reactive for neurofilament protein. Taken together, we made a final diagnosis of PPTID. This is the first presentation of cytological analysis by squash preparation that gives an important clue to accurate diagnosis of pineal parenchymal tumor and to understand its malignant potential. Diagn. Cytopathol. 2008;36:749,753. © 2008 Wiley-Liss, Inc. [source]


Cryoimmobilization and three-dimensional visualization of C. elegans ultrastructure

JOURNAL OF MICROSCOPY, Issue 1 2003
T. Müller-Reichert
Summary Caenorhabditis elegans is one of the most important genetic systems used in current biological research. Increasingly, these genetics-based research projects are including ultrastructural analyses in their attempts to understand the molecular basis for cell function. Here, we present and review state-of-the-art methods for both ultrastructural analysis and immunogold localization in C. elegans. For the initial cryofixation, high-pressure freezing is the method of choice, and in this article we describe two different strategies to prepare these nematode worms for rapid freezing. The first method takes advantage of transparent, porous cellulose capillary tubes to contain the worms, and the second packs the worms in E. coli and/or yeast paste prior to freezing. The latter method facilitates embedding of C. elegans in a thin layer of resin so individual worms can be staged, selected and precisely orientated for serial sectioning followed by immunolabelling or electron tomography. [source]


Isolation and partial purification of the Saccharomyces cerevisiae cytokinetic apparatus,

CYTOSKELETON, Issue 1 2010
Brian A. Young
Abstract Cytokinesis is the process by which a cell physically divides in two at the conclusion of a cell cycle. In animal and fungal cells, this process is mediated by a conserved set of proteins including actin, type II myosin, IQGAP proteins, F-BAR proteins, and the septins. To facilitate biochemical and ultrastructural analysis of cytokinesis, we have isolated and partially purified the Saccharomyces cerevisiae cytokinetic apparatus. The isolated apparatus contains all components of the actomyosin ring for which we tested,actin, myosin heavy and light chain, and IQGAP,as well as septins and the cytokinetic F-BAR protein, Hof1p. We also present evidence indicating that the actomyosin rings associated with isolated cytokinetic apparati may be contractile in vitro, and show preliminary electron microscopic imaging of the cytokinetic apparatus. This first successful isolation of the cytokinetic apparatus from a genetically tractable organism promises to make possible a deeper understanding of cytokinesis. © 2009 Wiley-Liss, Inc. [source]


Changes in gene expression and morphology of mouse embryonic stem cells on differentiation into insulin-producing cells in vitro and in vivo

DIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 5 2009
Ortwin Naujok
Abstract Background Embryonic stem (ES) cells have the potential to produce unlimited numbers of surrogate insulin-producing cells for cell replacement therapy of type 1 diabetes mellitus. The impact of the in vivo environment on mouse ES cell differentiation towards insulin-producing cells was analysed morphologically after implantation. Methods ES cells differentiated in vitro into insulin-producing cells according to the Lumelsky protocol or a new four-stage differentiation protocol were analysed morphologically before and after implantation for gene expression by in situ reverse transcription polymerase chain reaction and protein expression by immunohistochemistry and ultrastructural analysis. Results In comparison with nestin positive ES cells developed according to the reference protocol, the number of ES cells differentiated with the four-stage protocol increased under in vivo conditions upon morphological analysis. The cells exhibited, in comparison to the in vitro situation, increased gene and protein expression of Pdx1, insulin, islet amyloid polypeptide (IAPP), the GLUT2 glucose transporter and glucokinase, which are functional markers for glucose-induced insulin secretion of pancreatic beta cells. Renal sub-capsular implantation of ES cells with a higher degree of differentiation achieved by in vitro differentiation with a four-stage protocol enabled further significant maturation for the beta-cell-specific markers, insulin and the co-stored IAPP as well as the glucose recognition structures. In contrast, further in vivo differentiation was not achieved with cells differentiated in vitro by the reference protocol. Conclusions A sufficient degree of in vitro differentiation is an essential prerequisite for further substantial maturation in a beta-cell-specific way in vivo, supported by cell-cell contacts and vascularisation. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Acid microenvironments in microbial biofilms of antarctic endolithic microecosystems

ENVIRONMENTAL MICROBIOLOGY, Issue 4 2003
Asunción Los Rķos
Summary Antarctic endolithic microecosystems harbour distinct biofilms. The lithic substrate and the microorganisms comprising these films are intimately linked, leading to complex mineral,microbe interactions. Hence, the microhabitats and microenvironments of these microecosystems are not only determined by the physicochemical features of the lithic substrate, but are also conditioned by the biological components of these biofilms. The Antarctic biofilms analysed in this study are characterized by the presence of extracellular polymer substances and acid microenvironments in the proximity of the cells; cyanobacteria appearing as key components. On ultrastructural analysis, these endolithic cyanobacteria showed differences in sheath organization, probably related to their spatial position in the lithic substrate. It is proposed that in this type of ecosystem, biofilm structure could favour the formation of microsites with specific physicochemical conditions appropriate for the survival of microbial communities in this extreme environment. [source]


Conduction block and glial injury induced in developing central white matter by glycine, GABA, noradrenalin, or nicotine, studied in isolated neonatal rat optic nerve

GLIA, Issue 11 2009
Stavros Constantinou
Abstract The damaging effects of excessive glutamate receptor activation have been highlighted recently during injury in developing central white matter. We have examined the effects of acute exposure to four other neurotransmitters that have known actions on white matter. Eighty minutes of Glycine or GABA-A receptor activation produced a significant fall in the compound action potential recorded from isolated post-natal day 10 rat optic nerve. This effect was largely reversed upon washout. Nicotinic acetylcholine receptor (nAChR) or adrenoreceptor activation with noradrenalin resulted in an ,35% block of the action potential that did not reverse during a 30-min washout period. While the effect of nAChR activation was blocked by a nAChR antagonist, the effect of noradrenalin was not ablated by ,- or ,-adrenoreceptor blockers applied alone or in combination. In the absence of noradrenalin, co-perfusion with ,- and ,-adrenoreceptor blockers resulted in nonreversible nerve failure indicating that tonic adrenoreceptor activation is required for nerve viability, while overactivation of these receptors is also damaging. Nerves exposed to nAChR + adrenoreceptor activation showed no axon pathology but had extensive glial injury revealed by ultrastructural analysis. Oligodendroglia exhibited regions of membrane vacuolization while profound changes were evident in astrocytes and included the presence of swollen and expanded mitochondria, vacuolization, cell processes disintegration, and membrane breakdown. Blinded assessment revealed higher levels of astrocyte injury than oligodendroglial injury. The findings show that overactivation of neurotransmitter receptors other than those for glutamate can produce extensive injury to developing white matter, a phenomenon that may be clinically significant. © 2009 Wiley-Liss, Inc. [source]


Human PARM-1 is a novel mucin-like, androgen-regulated gene exhibiting proliferative effects in prostate cancer cells

INTERNATIONAL JOURNAL OF CANCER, Issue 6 2008
Cathrine Fladeby
Abstract In this paper we characterize hPARM-1, the human ortholog of rat PARM-1 (prostatic androgen-repressed message-1) and demonstrate its role in prostate cancer. Immunofluorescence microscopy and ultrastructural analysis revealed the localization of hPARM-1 to Golgi, plasma membrane and the early endocytic pathway but not in lysosomes. Biochemical and deglycosylation studies showed hPARM-1 as a highly glycosylated, mucin-like type I transmembrane protein. Analysis of expression of hPARM-1 in various human tissues revealed its presence in most human tissues with especially high expression in heart, kidney and placenta. Androgen controls the expression of the gene as a marked 7-fold increase is seen in the androgen-dependent prostate cancer cell line, LNCaP on androgen stimulation. This is further supported by its decrease in expression in CWR22 xenograft upon castration. Moreover, ectopic expression of hPARM-1 in PC3 prostate cancer cells increased colony formation, suggesting a probable role in cell proliferation. These results suggest that hPARM-1 may have a role in normal biology of the prostate cell and in prostate cancer. © 2007 Wiley-Liss, Inc. [source]


Calpain-mediated breakdown of cytoskeletal proteins contributes to cholecystokinin-induced damage of rat pancreatic acini

INTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 4 2009
Heike Weber
Summary The cytosolic cysteine protease calpain is implicated in a multitude of cellular functions but also plays a role in cell damage. Our previous results suggest that an activation of calpain accompanied by a decrease in its endogenous inhibitor calpastatin may contribute to pancreatic damage during cerulein-induced acute pancreatitis. The present study aimed at the time course of secretagogue-induced calpain activation and cellular substrates of the protease. Isolated rat pancreatic acini were incubated with a supramaximal concentration of cholecystokinin (0.1 ,M CCK) for 30 min in the presence or absence of the calpain inhibitor Z-Val-Phe methyl ester (100 ,M ZVP). The activation of calpain and the expression of calpastatin and the actin cytoskeleton-associated proteins ,II-spectrin, E-cadherin and vinculin were studied by immunoblotting. The cell damage was assessed by lactate dehydrogenase release and ultrastructural analysis including fluorescence-labelled actin filaments. Immediately after administration, CCK led to activation of both calpain isoforms, ,- and m-calpain. The protease activation was accompanied by a decrease in the E-cadherin level and formation of calpain-specific breakdown products of ,II-spectrin. A calpain-specific cleavage product of vinculin appeared concomitantly with changes in the actin filament organization. No effect of CCK on calpastatin was found. Inhibition of calpain by ZVP reduced CCK-induced damage of the actin-associated proteins and the cellular ultrastructure including the actin cytoskeleton. The results suggest that CCK-induced acinar cell damage requires activation of calpain and that the actin cytoskeleton belongs to the cellular targets of the protease. [source]


Ultrastructural correlates of synapse withdrawal at axotomized neuromuscular junctions in mutant and transgenic mice expressing the Wld gene

JOURNAL OF ANATOMY, Issue 3 2003
Thomas H. Gillingwater
Abstract We carried out an ultrastructural analysis of axotomized synaptic terminals in Wlds and Ube4b/Nmnat (Wld) transgenic mice, in which severed distal axons are protected from Wallerian degeneration. Previous studies have suggested that axotomy in juvenile (< 2 months) Wld mice induced a progressive nerve terminal withdrawal from motor endplates. In this study we confirm that axotomy-induced terminal withdrawal occurs in the absence of all major ultrastructural characteristics of Wallerian degeneration. Pre- and post-synaptic membranes showed no signs of disruption or fragmentation, synaptic vesicle densities remained at pre-axotomy levels, the numbers of synaptic vesicles clustered towards presynaptic active zones did not diminish, and mitochondria retained their membranes and cristae. However, motor nerve terminal ultrastructure was measurably different following axotomy in Wld transgenic 4836 line mice, which strongly express Wld protein: axotomized presynaptic terminals were retained, but many were significantly depleted of synaptic vesicles. These findings suggest that the Wld gene interacts with the mechanisms regulating transmitter release and vesicle recycling. [source]


Cryoimmobilization and three-dimensional visualization of C. elegans ultrastructure

JOURNAL OF MICROSCOPY, Issue 1 2003
T. Müller-Reichert
Summary Caenorhabditis elegans is one of the most important genetic systems used in current biological research. Increasingly, these genetics-based research projects are including ultrastructural analyses in their attempts to understand the molecular basis for cell function. Here, we present and review state-of-the-art methods for both ultrastructural analysis and immunogold localization in C. elegans. For the initial cryofixation, high-pressure freezing is the method of choice, and in this article we describe two different strategies to prepare these nematode worms for rapid freezing. The first method takes advantage of transparent, porous cellulose capillary tubes to contain the worms, and the second packs the worms in E. coli and/or yeast paste prior to freezing. The latter method facilitates embedding of C. elegans in a thin layer of resin so individual worms can be staged, selected and precisely orientated for serial sectioning followed by immunolabelling or electron tomography. [source]


Characterization of the Acute Cardiac Electrophysiologic Effects of Ethanol in Dogs

ALCOHOLISM, Issue 9 2007
Guilherme Fenelon
Background: Alcohol has been related to atrial fibrillation (holiday heart syndrome), but its electrophysiologic actions remain unclear. Methods: We evaluated the effects of alcohol in 23 anesthetized dogs at baseline and after 2 cumulative intravenous doses of ethanol: first dose 1.5 ml/kg (plasma level 200 mg/dl); second dose 1.0 ml/kg (279 mg/dl). In 13 closed-chest dogs (5 with intact autonomic nervous system, 5 under combined autonomic blockade and 3 sham controls), electrophysiologic evaluation and monophasic action potential (MAP) recordings were undertaken in the right atrium and ventricle. In 5 additional dogs, open-chest biatrial epicardial mapping with 8 bipoles on Bachmann's bundle was undertaken. In the remaining 5 dogs, 2D echocardiograms and ultrastructural analysis were performed. Results: In closed-chest dogs with intact autonomic nervous system, ethanol had no effects on surface electrocardiogram and intracardiac variables. At a cycle length of 300 milliseconds, no effects were noted on atrial and ventricular refractoriness and on the right atrial MAP. These results were not altered by autonomic blockade. No changes occurred in sham controls. In open-chest dogs, ethanol did not affect inter-atrial conduction time, conduction velocity, and wavelength. Atrial arrhythmias were not induced in any dog, either at baseline or after ethanol. Histological and ultrastructural findings were normal but left ventricular (LV) ejection fraction decreased in treated dogs (77 vs. 73 vs. 66%; p = 0.04). Conclusion: Ethanol at medium and high doses depresses LV systolic function but has no effects on atrial electrophysiological parameters. These findings suggest that acute alcoholic intoxication does not directly promote atrial arrhythmias. [source]