Home About us Contact | |||
UV Resistance (uv + resistance)
Selected AbstractsStimulation of DNA repair and increased light output in response to UV irradiation in Escherichia coli expressing lux genesLUMINESCENCE: THE JOURNAL OF BIOLOGICAL AND CHEMICAL LUMINESCENCE, Issue 3 2007Kerry L. Cutter Abstract It has previously been suggested that the evolutionary drive of bacterial bioluminescence is a mechanism of DNA repair. By assessing the UV sensitivity of Escherichia coli, it is shown that the survival of UV-irradiated E. coli constitutively expressing luxABCDE in the dark is significantly better than either a strain with no lux gene expression or the same strain expressing only luciferase (luxAB) genes. This shows that UV resistance is dependent on light output, and not merely on luciferase production. Also, bacterial survival was found to be dependent on the conditions following UV irradiation, as bioluminescence-mediated repair was not as efficient as repair in visible light. Moreover, photon emission revealed a dose-dependent increase in light output per cell after UV exposure, suggesting that increased lux gene expression correlates with UV-induced DNA damage. This phenomenon has been previously documented in organisms where the lux genes are under their natural luxR regulation but has not previously been demonstrated under the regulation of a constitutive promoter. Copyright © 2007 John Wiley & Sons, Ltd. [source] Stem cell factor rescues tyrosinase expression and pigmentation in discreet anatomic locations in albino micePIGMENT CELL & MELANOMA RESEARCH, Issue 6 2009Jillian C Vanover Summary The K14-SCF transgenic murine model of variant pigmentation is based on epidermal expression of stem cell factor (SCF) on the C57BL/6J background. In this system, constitutive expression of SCF by epidermal keratinocytes results in retention of melanocytes in the interfollicular basal layer and pigmentation of the epidermis itself. Here, we extend this animal model by developing a compound mutant transgenic amelanotic animal defective at both the melanocortin 1 receptor (Mc1r) and tyrosinase (Tyr) loci. In the presence of K14-Scf, tyrosinase-mutant animals (previously thought incapable of synthesizing melanin) exhibited progressive robust epidermal pigmentation with age in the ears and tails. Furthermore, K14-SCF Tyrc2j/c2j animals demonstrated tyrosinase expression and enzymatic activity, suggesting that the c2j Tyr defect can be rescued in part by SCF in the ears and tail. Lastly, UV sensitivity of K14-Scf congenic animals depended mainly on the amount of eumelanin present in the skin. These findings suggest that c-kit signaling can overcome the c2j Tyr mutation in the ears and tails of aging animals and that UV resistance depends on accumulation of epidermal eumelanin. [source] Adequate phenylalanine synthesis mediated by G protein is critical for protection from UV radiation damage in young etiolated Arabidopsis thaliana seedlingsPLANT CELL & ENVIRONMENT, Issue 12 2008KATHERINE M. WARPEHA ABSTRACT Etiolated Arabidopsis thaliana seedlings, lacking a functional prephenate dehydratase1 gene (PD1), also lack the ability to synthesize phenylalanine (Phe) and, as a consequence, phenylpropanoid pigments. We find that low doses of ultraviolet (UV)-C (254 nm) are lethal and low doses of UV-B cause severe damage to etiolated pd1 mutants, but not to wild-type (wt) seedlings. Furthermore, exposure to UV-C is lethal to etiolated gcr1 (encoding a putative G protein-coupled receptor in Arabidopsis) mutants and gpa1 (encoding the sole G protein , subunit in Arabidopsis) mutants. Addition of Phe to growth media restores wt levels of UV resistance to pd1 mutants. The data indicate that the Arabidopsis G protein-signalling pathway is critical to providing protection from UV, and does so via the activation of PD1, resulting in the synthesis of Phe. Cotyledons of etiolated pd1 mutants have proplastids (compared with etioplasts in wt), less cuticular wax and fewer long-chain fatty acids. Phe-derived pigments do not collect in the epidermal cells of pd1 mutants when seedlings are treated with UV, particularly at the cotyledon tip. Addition of Phe to the growth media restores a wt phenotype to pd1 mutants. [source] Effect of clay with different cation exchange capacity on the morphology and properties of poly(methyl methacrylate)/clay nanocompositesPOLYMER COMPOSITES, Issue 11 2009Tsung-Yen Tsai PMMA/clay nanocomposites were successfully prepared by in situ free-radical polymerization with the organic modified MMT-clay using methyl methacrylate monomer and benzoyl peroxide initiator. Two clays with different cation exchange capacity have been used to prepare and compare the several properties. The clays have been modified using Amphoterge K2 by ion exchange reaction to increase the compatibility between the clay and polymer matrices. The modified clays have been characterized by wide-angle X-ray diffraction pattern, Fourier transform infrared spectroscopy, and thermogravimetric analysis (TGA). The powdered X-ray diffraction and transmission electron microscopy techniques were employed to study the morphology of the PMMA/clay nanocomposites which indicate that the modified clays are dispersed in PMMA matrix to form both exfoliated and intercalated PMMA/modified clay nanocomposites. The thermomechanical properties were examined by TGA, differential scanning calorimetry, and dynamic mechanical analysis. Gas permeability analyzer shows the excellent gas barrier property of the nanocomposites, which is in good agreement with the morphology. The optical property was measured by UV,vis spectroscopy which shows that these materials have good optical clarity and UV resistance. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers [source] Arabidopsis thaliana Y-family DNA polymerase , catalyses translesion synthesis and interacts functionally with PCNA2THE PLANT JOURNAL, Issue 6 2008Heather J. Anderson Summary Upon blockage of chromosomal replication by DNA lesions, Y-family polymerases interact with monoubiquitylated proliferating cell nuclear antigen (PCNA) to catalyse translesion synthesis (TLS) and restore replication fork progression. Here, we assessed the roles of Arabidopsis thaliana POLH, which encodes a homologue of Y-family polymerase , (Pol,), PCNA1 and PCNA2 in TLS-mediated UV resistance. A T-DNA insertion in POLH sensitized the growth of roots and whole plants to UV radiation, indicating that AtPol, contributes to UV resistance. POLH alone did not complement the UV sensitivity conferred by deletion of yeast RAD30, which encodes Pol,, although AtPol, exhibited cyclobutane dimer bypass activity in vitro, and interacted with yeast PCNA, as well as with Arabidopsis PCNA1 and PCNA2. Co-expression of POLH and PCNA2, but not PCNA1, restored normal UV resistance and mutation kinetics in the rad30 mutant. A single residue difference at site 201, which lies adjacent to the residue (lysine 164) ubiquitylated in PCNA, appeared responsible for the inability of PCNA1 to function with AtPol, in UV-treated yeast. PCNA-interacting protein boxes and an ubiquitin-binding motif in AtPol, were found to be required for the restoration of UV resistance in the rad30 mutant by POLH and PCNA2. These observations indicate that AtPol, can catalyse TLS past UV-induced DNA damage, and links the biological activity of AtPol, in UV-irradiated cells to PCNA2 and PCNA- and ubiquitin-binding motifs in AtPol,. [source] |