UV Mutagenesis (uv + mutagenesi)

Distribution by Scientific Domains


Selected Abstracts


Development of a novel quadruple auxotrophic host transformation system by argB gene disruption using adeA gene and exploiting adenine auxotrophy in Aspergillus oryzae

FEMS MICROBIOLOGY LETTERS, Issue 1 2004
Feng Jie Jin
Abstract We previously designed a triple auxotrophic host-vector system in Aspergillus oryzae by isolating red-colored adenine auxotrophic mutants upon UV mutagenesis of a double auxotrophic host (niaD,sC,). In the present study an effort to exploit this system and construct a novel quadruple auxotrophic host was made by disrupting the argB gene involved in arginine biosynthesis. The argB gene-disruption cassette was generated by fusion PCR, which required only two steps of PCR to insert the selectable marker, adeA, into the target argB gene. The chimeric DNA fragment was transformed into the triple auxotrophic strain (niaD,sC,adeA,) and the argB disruptants were obtained with a high rate of efficiency (approximately 40%). The argB disruptants were characterized by normal colony color and reversal of arginine auxotrophy by introduction of the wild-type argB gene. Quadruple auxotrophic strains (niaD,sC,,argB adeA, or niaD,sC,,argB adeB,) were subsequently isolated upon UV mutagenesis of the triple auxotrophic strain (niaD,sC,,argB) followed by screening of red-colored colonies for adenine auxotrophy. The results obtained showed that the adeA gene served as an efficient selection marker in developing a novel host-vector system with quadruple auxotrophy in A. oryzae, thus providing a powerful tool to breed multiple auxotrophic mutants from a deuteromycete wherein sexual crossing is impossible. [source]


ISOLATION AND CHARACTERIZATION OF A CELL WALL-DEFECTIVE MUTANT OF CHLAMYDOMONAS MONOICA (CHLOROPHYTA),

JOURNAL OF PHYCOLOGY, Issue 6 2003
Cesar Fuentes
Cell wall,defective strains of Chlamydomonas have played an important role in the development of transformation protocols for introducing exogenous DNA (foreign genes or cloned Chlamydomonas genes) into C. reinhardtii. To promote the development of similar protocols for transformation of the distantly related homothallic species, C. monoica, we used UV mutagenesis to obtain a mutant strain with a defective cell wall. The mutant, cw-1, was first identified on the basis of irregular colony shape and was subsequently shown to have reduced plating efficiency and increased sensitivity to lysis by a non-ionic detergent as compared with wild-type cells. Tetrad analysis of crosses involving the cw-1 mutant confirmed 2:2 segregation of the cw:cw+ phenotypes, indicating that the wall defect resulted from mutation of a single nuclear gene. The phenotype showed incomplete penetrance and variable expressivity. Although some cells had apparently normal cell walls as viewed by TEM, many cells of the cw-1 strain had broken cell walls and others were protoplasts completely devoid of a cell wall. Several cw-1 isolates obtained from crosses involving the original mutant strain showed a marked enhancement of the mutant phenotype and may prove especially useful for future work involving somatic cell fusions or development of transformation protocols. [source]


Generation of high rapamycin producing strain via rational metabolic pathway-based mutagenesis and further titer improvement with fed-batch bioprocess optimization

BIOTECHNOLOGY & BIOENGINEERING, Issue 3 2010
Xiangcheng Zhu
Abstract Rapamycin is a triene macrolide antibiotic produced by Streptomyces hygroscopicus. Besides its wide application as an effective immunosuppressive agent, other important bioactivities have made rapamycin a potential drug lead for novel pharmaceutical development. However, the low titer of rapamycin in the original producer strain limits further industrialization efforts and restricts its use for other applications. Predicated on knowledge of the metabolic pathways related to rapamycin biosynthesis in S. hygroscopicus, we have rationally designed approaches to generate a rapamycin high producer strain of S. hygroscopicus HD-04-S. These have included alleviation of glucose repression, improved tolerance towards lysine and shikimic acid, and auxotrophy of tryptophan and phenylalanine through the application of stepwise UV mutagenesis. The resultant strain produced rapamycin at 450,mg/L in the shake flask scale. These fermentations were further scaled up in 120 and 20,000,L fermentors, respectively, at the pilot plant. Selected fermentation factors including agitation speed, pH, and on-line supplementation were systematically evaluated. A fed-batch strategy was established to maximize rapamycin production. With these efforts, an optimized fermentation process in the larger scale fermentor was developed. The final titer of rapamycin was 812,mg/L in the 120,L fermentor and 783,mg/L in the 20,000,L fermentor. This work highlights a high rapamycin producing strain derived by mutagenesis and subsequent screening, fermentation optimization of which has now made it feasible to produce rapamycin on an industrial scale by fermentation. The strategies developed here should also be applicable to titer improvement of other important microbial natural products on an industrial scale. Biotechnol. Bioeng. 2010;107: 506,515. © 2010 Wiley Periodicals, Inc. [source]


Mutants of the pentose-fermenting yeast Pichia stipitis with improved tolerance to inhibitors in hardwood spent sulfite liquor

BIOTECHNOLOGY & BIOENGINEERING, Issue 5 2009
Paramjit K. Bajwa
Abstract Mutants of Pichia stipitis NRRL Y-7124 able to tolerate and produce ethanol from hardwood spent sulfite liquor (HW SSL) were obtained by UV mutagenesis. P. stipitis cells were subjected to three successive rounds of UV mutagenesis, each followed by screening first on HW SSL gradient plates and then in diluted liquid HW SSL. Six third generation mutants with greater tolerance to HW SSL as compared to the wild type (WT) were isolated. The WT strain could not grow in HW SSL unless it was diluted to 65% (v/v). In contrast, the third generation mutants were able to grow in HW SSL diluted to 75% (v/v). Mutants PS301 and PS302 survived even in 80% (v/v) HW SSL, although there was no increase in cell number. All the third generation mutants exhibited higher growth rates but significantly lower growth yields on xylose or glucose compared to the WT. The mutants fermented 4% (w/v) glucose as efficiently as the WT and fermented 4% (w/v) xylose more efficiently with a higher ethanol yield than the WT. In a medium containing 4% (w/v) each of xylose and glucose, all the third generation mutants utilized glucose as efficiently and xylose more efficiently than the WT. This resulted in higher ethanol yield by the mutants. The mutants retained the ability to utilize galactose and mannose and ferment them to ethanol. Arabinose was consumed slowly by both the mutants and WT with no ethanol production. In 60% (v/v) HW SSL, the mutants utilized and fermented glucose, mannose, galactose and xylose while the WT could not ferment any of these sugars. Biotechnol. Bioeng. 2009; 104: 892,900. © 2009 Wiley Periodicals, Inc. [source]