Home About us Contact | |||
UV Damage (uv + damage)
Selected AbstractsCANu1, a novel nucleolar protein, accumulated on centromere in response to DNA damageGENES TO CELLS, Issue 8 2008Choong-Ryoul Sihn Single nucleotide polymorphism is known to be an ideal marker to detect human diseases. We isolated a novel human gene, to be called as CANu1, by the large-scale genome-wide association analysis to screen specific Single nucleotide polymorphisms in colon cancer. It is mapped to chromosome 14q11.2 and its transcript contains a 948-nt open reading frame encoding a protein of 315 aa. Here, we observed that green fluorescence protein (GFP)-fused CANu1 protein was localized to nucleoli and the C-termini of CANu1 protein were essential for its localization. Moreover, the silencing of the CANu1 gene by siRNA caused ribosomal stress leading to G1 cell cycle arrest, the induction of p53 protein, and the translocation of B23 protein. In addition, CANu1 protein was translocated from nucleolus to nuclear foci in response to UV damage. Interestingly, the mobility of a GFP-CANu1 protein in the UV damaged cells was two times faster than non-irradiated cells. Taken together, we report that a novel nucleolar protein, CANu1, is essential to maintain ribosomal structure and responsive upon UV damage. [source] Signalling responses linked to betulinic acid-induced apoptosis are antagonized by MEK inhibitor U0126 in adherent or 3D spheroid melanoma irrespective of p53 statusINTERNATIONAL JOURNAL OF CANCER, Issue 5 2006Manuel Rieber Abstract MEK1/2 inhibitors like U0126 can potentiate or antagonize the antitumor activity of cytotoxic agents such as cisplatin, paclitaxel or vinblastine, depending on the drug or the target cells. We now investigated whether U0126, differentially regulates melanoma signaling in response to UV radiation or betulinic acid, a drug lethal against melanoma. This report shows that U0126 inhibits early response (ERK) kinase activation and cyclin A expression in wt p53 C8161 melanoma exposed to either UV radiation or betulinic acid. However, U0126 does not protect from UV damage, but counteracts betulinic acid-mediated apoptosis in the same cells. Protection from the latter drug by joint treatment with U0126 was also evident in wt p53 MelJuso melanoma and mutant p53 WM164 melanoma. The latter cells were the most responsive to betulinic acid, showing a selective decline in the cdk4 protein, without a comparable change in other key cell cycle proteins like cdc2, cdk2, cdk7 or cyclin A, prior to apoptosis-associated PARP fragmentation. Laser scanning cytometry also showed that betulinic acid induced a significant increase in chromatin condensation in WM164 melanoma irrespective of whether they were in adherent form or as multicellular spheroids. All these betulinic acid-induced changes were counteracted by U0126. Our data show for the first time that (a) cdk4 protein is an early target of betulinic acid-induced apoptosis and (b) unrestricted ERK signaling favours betulinic acid-induced apoptosis, but this is counteracted by U0126, partly through counteracting chromatin condensation and restoring Akt activation decreased by betulinic acid treatment. © 2005 Wiley-Liss, Inc. [source] Characteristics of skin aging in Korean men and womenINTERNATIONAL JOURNAL OF COSMETIC SCIENCE, Issue 1 2005J. H. Chung Introduction Korea is located between Japan and Mainland China. The people of these three countries have similar appearances and it is difficult to differentiate between them. Although the population of Asia is more than half of the total population of the Earth, the inherent characteristics of Asian skin have not been well investigated. Commercial markets for cosmetics and drugs for photoaged skin are rapidly expanding in many Asian countries. Therefore, many investigators in the field of dermatology and cosmetology have become interested in brown Asian skin. Clinical characteristics of skin aging and photoaging in Asians Skin aging can be divided into two basic processes: intrinsic aging and photoaging [1]. Intrinsic aging is characterized by smooth, dry, pale, and finely wrinkled skin, whereas photoaging, which indicates premature skin aging in chronically photodamaged skin, is characterized by severe wrinkling and irregular pigmentation. The pattern of wrinkling in Asians seems to differ from that in Caucasians. Asians have coarser, thicker and deep wrinkles, particularly in the forehead, perioral and Crow's foot areas. In contrast, Caucasians usually have relatively fine cheek and Crow's foot wrinkles. The reasons for these differences are not known and need further investigation. There are racial, ethnic and genetic differences, and differences of skin structure and function, between the brown skin of Asians and the white skin of Caucasians. As Asian skin is more pigmented, acute and chronic cutaneous responses to UV irradiation differ from those in white skin. Many people believe, based on clinical impressions, that the main process of photoaging in Asians involves pigmentary changes, rather than wrinkling. However, no study has been performed to confirm this belief. Risk factors for skin wrinkles and their relative risks in Korean skin [2] Various factors such as age, sun-exposure, and smoking are known to be important risk factors for wrinkles. However, the relative risks of each factor on wrinkles in the brown skin of Asians have not been investigated, and they could differ from those in Caucasians. An evaluation system for skin wrinkling is necessary for Asian skin [3]. Thus, we developed an eight-point photographic scale for assessing wrinkles in both Korean genders [2]. This scale can probably be applied to the populations of other Asian countries, at least to the Japanese and Chinese. The pattern of wrinkles in both genders appears to be similar. Age Age is an important risk factor for wrinkling in Asians, as in Caucasians. Korean subjects in their 60s showed a 12-fold increased risk of wrinkling, while subjects in their 70s have a 56-fold increased risk compared with young age group. UV light It is well known that the UV component in sunlight can cause and accelerate photoaging. The pigmented skin of Asian may better protect skin from acute and chronic UV damage. However, we found a strong association between sun-exposure and the development of wrinkling in Koreans. It was found that sun exposure of more than 5 h per day was associated with a 4.8-fold increased risk in wrinkling versus less than 2 h of sun-exposure in Koreans. Estrogen deficiency Korean females have more wrinkles than men, after controlling for age, sun exposure, and smoking, it was found that they have a 3.6-fold increased risk of developing wrinkles than their male counterparts [2]. It has also been reported, that the relative risk for wrinkling in women is higher than in men as for in white Caucasians [4]. The reason why women show more wrinkles remains to be determined. It is possible that a reduction in skin collagen because of estrogen deficiency in postmenopausal woman may aggravate wrinkling severity. Korean women with more than 10 years since menopause showed a 3.9-fold higher risk of wrinkling than the women 5 years of beyond menopause [5]. We demonstrated that women with a history of HRT have a significantly lower risk, more specifically, one fifth of the risk of facial wrinkling relative to those who had no history of HRT. Interestingly, we found that wrinkle severity significantly increased with an increasing number of full term pregnancies. The relative risk for severe wrinkling is increased by approximately 1.8-fold per full term pregnancy. Smoking It is known that smoking causes skin wrinkling in Caucasians, and that it plays no role in Blacks [6, 7]. Koreans with have a smoking history of more than 30 pack years showed a more than 2.8-fold increased risk of wrinkles [2]. The relative risks of wrinkles associated with a 30,50 pack-years history of smoking were 2.8- and 5.5-fold, respectively. Dyspigmentation in Asian skin To follow pigmentary changes, six photographic standards for both genders were developed for Korean skin, to produce a 6-point scale [2, 8]. Hyperpigmented spots, mostly lentigines, were prominent among women, while seborrheic keratosis tended to be more prominent in men. Seborrheic keratosis in Korean men Seborrheic keratoses (SKs) are benign cutaneous tumors. They have diverse clinical and histopathological appearances and are very common in the elderly (over 50 years old). The etiology of SKs is not well understood, although patients with a great number of lesionsshow a familial trait with an autosomal dominant pattern, and human papilloma virus has been suggested as possible cause because of verrucous appearance of the lesions. Exposure to sunlight has been suggested to be a risk factor for SKs. However, there is still some debate in terms of the role of sunlight. Recently, we have investigated the clinical characteristics of SKs and relationship between SKs and sunlight exposure in Korean males [9]. The prevalence of SKs in Koreans increases with age; it rose from 78.9% at 40 years, to 93.9% at 50 years and 98.7% in those over 60 years. Exposed areas, i.e. the face, neck and dorsum of the hands, demonstrate a significant increase in the prevalence of SKs by decade, whereas partly exposed areas, although SKs tended to increase in prevalence with age, this trend was not significant. When the estimated body surface area (BSA) is taken into account, the number of SKs on both the face and dorsum of the hands (0.51 ± 0.08 per 1% BSA) was over-represented compared with the trunk. SKs were also concentrated on the neck (0.38 ± 0.07 per 1% BSA) and in the V-area (0.47 ± 0.09 per 1% BSA). Outer forearms also showed 3-fold more SKs per unit area than neighboring arms and inner forearms, which are classified as partly exposed area (0.09 ± 0.02, 0.03 ± 0.01, respectively). The total area covered by SKs on exposed area also became significantly larger with aging than on intermittently exposed areas. These results indicate that exposure to sunlight might be related to SK growth. Our results indicated that excessive sun exposure is an independent risk factor of SKs. After controlling for age, smoking, and skin type, subjects with a sun exposure history of more than 6 hours per day showed a 2.28-fold increased risk of having severe SKs (n , 6) compared with those exposed for less that 3 h per day. These findings indicated that sun-exposure may play an important role in SK development. In summary, SKs are very common in Korean males and represent one of the major pigmentary problems. SKs concentrate on exposed skin, especially on the face and dorsum of the hands. Both age and lifetime cumulative sunlight exposure are important contributing factors and may work in a synergistic manner. Conclusion Many people tend to believe that wrinkles are not a prominent feature of Asian photoaged skin, and that dyspigmentation is a major manifestation in Asian skin. Contrary to this impression, wrinkling is also a major problem in the photoaged skin of Asians, and Korean people showing severe pigmentary changes usually tend to have severe wrinkles. In conclusion, the wrinkling patterns and pigmentary changes of photoaged skin in East Asians differ from those of Caucasians, and the relative risks of aggravating factors may be different from those of Caucasian skin. References 1.,Gilchrest, B.A. Skin aging and photoaging: an overview. J. Am. Acad. Dermatol. 21, 610,613 (1989). 2.,Chung, J.H. et al. Cutaneous photodamage in Koreans: influence of sex, sun exposure, smoking, and skin color. Arch. Dermatol. 137, 1043,1051 (2001). 3.,Griffiths, C.E. et al. A photonumeric scale for the assessment of cutaneous photodamage. Arch. Dermatol. 128, 347,351 (1992). 4.,Ernster, V.L. et al. Facial wrinkling in men and women, by smoking status. Am. J. Public Health. 85, 78,82 (1995). 5.,Youn, C.S. et al. Effect of pregnancy and menopause on facial wrinkling in women. Acta Derm. Venereol. 83, 419,424 (2003). 6.,Kadunce, D.P. et al. Cigarette smoking: risk factor for premature facial wrinkling. Ann. Intern. Med. 114, 840,844 (1991). 7.,Allen, H.B., Johnson, B.L. and Diamond, S.M. Smoker's wrinkles? JAMA. 225, 1067,1069 (1973). 8.,Chung, J.H. Photoaging in Asians. Photodermatol. Photoimmunol. Photomed. 19, 109,121 (2003). 9.,Kwon, O.S. et al. Seborrheic keratosis in the Korean males: causative role of sunlight. Photodermatol. Photoimmunol. Photomed. 19, 73,80 (2003). [source] Ultraviolet absorbance of the mucus of a tropical damselfish: effects of ontogeny, captivity and diseaseJOURNAL OF FISH BIOLOGY, Issue 6 2006J. P. Zamzow The ultraviolet (UV) absorbance of the mucus of a Great Barrier Reef damselfish Pomacentrus amboinensis was investigated with regard to ontogeny and time spent in captivity. The UV absorbance of P. amboinensis mucus increased with fish size and decreased with time spent in captivity. The wavelength of maximum absorbance of the mucus did not change with fish size, but shifted towards shorter wavelengths with increasing time spent in captivity. The UV absorbance of the mucus of fish with ,fin rot' was compared to that of similar healthy individuals, and a significant decrease in UV absorbance of unhealthy fish mucus was detected; no wavelength shifting occurred. Pomacentrus amboinensis appears to sequester mycosporine-like amino acids from the diet in order to protect epithelial tissues from UV damage, and decreases in UV absorbance in captive fish were probably due to insufficient dietary availability. [source] Photoprotection in Human Skin,A Multifaceted SOS Response,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 2 2008Mark S. Eller Human skin has developed elaborate defense mechanisms for combating a wide variety of potentially damaging environmental factors; principal among these is UV light. Despite these defenses, short-term damage may include painful sunburn and long-term UV damage results in both accelerated skin aging and skin cancers such as basal cell carcinoma, squamous cell carcinoma and even malignant melanoma. While UV radiation damages many cellular constituents, its most lasting effects involve DNA alteration. The following sections briefly review UV-inducible protective responses in bacteria and in skin, thymidine dinucleotides (pTT) as a powerful probe of DNA damage responses, and potential means of harnessing these inducible responses therapeutically to reduce the now enormous burden of cutaneous photodamage in our society. [source] DNA Damage, Apoptosis and Langerhans Cells,Activators of UV-induced Immune Tolerance,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 2 2008Laura Timares Solar UVR is highly mutagenic but is only partially absorbed by the outer stratum corneum of the epidermis. UVR can penetrate into the deeper layers of the epidermis, depending on melanin content, where it induces DNA damage and apoptosis in epidermal cells, including those in the germinative basal layer. The cellular decision to initiate either cellular repair or undergo apoptosis has evolved to balance the acute need to maintain skin barrier function with the long-term risk of retaining precancerous cells. Langerhans cells (LCs) are positioned suprabasally, where they may sense UV damage directly, or indirectly through recognition of apoptotic vesicles and soluble mediators derived from surrounding keratinocytes. Apoptotic vesicles will contain UV-induced altered proteins that may be presented to the immune system as foreign. The observation that UVR induces immune tolerance to skin-associated antigens suggests that this photodamage response has evolved to preserve the skin barrier by protecting it from autoimmune attack. LC involvement in this process is not clear and controversial. We will highlight some basic concepts of photobiology and review recent advances pertaining to UV-induced DNA damage, apoptosis regulation, novel immunomodulatory mechanisms and the role of LCs in generating antigen-specific regulatory T cells. [source] Sensitivity of the Early Life Stages of Macroalgae from the Northern Hemisphere to Ultraviolet Radiation,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2007Michael Y. Roleda The reproductive cells of macroalgae are regarded as the life history stages most susceptible to various environmental stresses, including UV radiation (UVR). UVR is proposed to determine the upper depth distribution limit of macroalgae on the shore. These hypotheses were tested by UV-exposure experiments, using spores and young thalli of the eulittoral Rhodophyceae Mastocarpus stellatus and Chondrus crispus and various sublittoral brown macroalgae (Phaeophyceae) with different depth distribution from Helgoland (German Bight) and Spitsbergen (Arctic). In spores, the degree of UV-induced inhibition of photosynthesis is lower in eulittoral species and higher in sublittoral species. After UV stress, recovery of photosynthetic capacity is faster in eulittoral compared to sublittoral species. DNA damage is lowest while repair of DNA damage is highest in eulittoral compared to sublittoral species. When the negative impact of UVR prevails, spore germination is inhibited. This is observed in deep water kelp species whereas the same UVR doses do not inhibit germination of shallow water kelp species. A potential acclimation mechanism to increase UV tolerance of brown algal spores is the species-specific ability to increase the content of UV-absorbing phlorotannins in response to UV-exposure. Growth rates of young Mastocarpus and Chondrus gametophytes exposed to experimental doses of UVR are not affected while growth rates of all young kelp sporophytes exposed to UVR are significantly lowered. Furthermore, morphological UV damage in Laminaria ochroleuca includes tissue deformation, lesion, blistering and thickening of the meristematic part of the lamina. The sensitivity of young sporophytes to DNA damage is correlated with thallus thickness and their optical characteristics. Growth rate is an integrative parameter of all physiological processes in juvenile plants. UV inhibition of growth may affect the upper distribution depth limit of adult life history stages. Juveniles possess several mechanisms to minimize UVR damage and, hence, are less sensitive but at the expense of growth. The species-specific susceptibility of the early life stages of macroalgae to UVR plays an important role for the determination of zonation patterns and probably also for shaping up community structure. [source] In Vitro Antioxidant and In Vivo Photoprotective Effects of an Association of Bioflavonoids with Liposoluble VitaminsPHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 3 2006Patrícia M. B. G. Maia Campos ABSTRACT A new tendency in cosmetic formulations is the association of botanical extracts and vitamins to improve skin conditions by synergic effects. The objective of this study was to determine the antioxidant activity of associated bioflavonoids, retinyl palmitate (RP), tocopheryl acetate (TA) and ascorbyl tetra-isopalmitate (ATIP), as well as their photoprotective effects in preventing increased erythema, transepidermal water loss (TEWL) and sunburn cell formation in hairless mouse skin. The antioxidant activity of solutions containing the association or each substance separately was evaluated in vitro by a chemiluminescence assay. The photoprotective effect was evaluated by means of in vivo tests. Dorsal skin of hairless mice was treated daily by topical applications for 5 days with formulations containing or not containing (vehicle) the flavonoid-vitamins association (5%). The skin was irradiated (UVA/B) 15 minutes after the last application. The results showed that bioflavonoids had in vitro antioxidant properties and also that when they were associated with vitamins their antioxidant activity was more pronounced. On the other hand, erythema and UV damage to the permeability barrier function (TEWL) was not significantly reduced by previous treatment with the flavonoid-vitamin-association formulations, when compared to the irradiated vehicle-treated area. However, the treatment protected the skin from UV damage because it reduced the number of sunburn cells, when compared to the vehicle-treated area. Finally, the association of vitamins and bioflavonoids added to a dermocosmetic formulation showed a relevant biological activity in terms of photoprotection, because the association of bioflavonoids and vitamins acted by different mechanisms, such as antioxidation and absorption of UV radiation, which suggests its use in antiaging and photoprotective products. [source] Molecular Responses to Stress Induced in Normal Human Caucasian Melanocytes in Culture by Exposure to Simulated Solar UV,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 2 2005Laurent Marrot ABSTRACT Melanocytes play a central role in the response of skin to sunlight exposure. They are directly involved in UV-induced pigmentation as a defense mechanism. However, their alteration can lead to melanoma, a process where the role of sun overexposure is highly probable. The transformation process whereby UV damage may result in melanoma initiation is poorly understood, especially in terms of UV-induced genotoxicity in pigmented cells, where melanin can act either as a sunscreen or as a photosensitizer. The aim of this study was to analyze the behavior of melanocytes from fair skin under irradiation mimicking environmental sunlight in terms of spectral power distribution. To do this, normal human Caucasian melanocytes in culture were exposed to simulated solar UV (SSUV, 300,400 nm). Even at relatively high doses (until 20 min exposure, corresponding to 12 kJ/m2 UV-B and 110 kJ/m2 UV-A), cell death was limited, as shown by cell viability and low occurrence of apoptosis (caspase-3 activation). Moreover, p53 accumulation was three times lower in melanocytes than in unpigmented cells such as fibroblasts after SSUV exposure. However, an important fraction of melanocyte population was arrested in G2-M phase, and this correlated well with a high induction level of the gene GADD45, 4 h after exposure. Among the genes involved in DNA repair, gene XPC was the most inducible because its expression increased more than two-fold 15 h after a 20 min exposure, whereas expression of P48 was only slightly increased. In addition, an early induction of Heme Oxygenase 1 (HO1) gene, a typical response to oxidative stress, was also observed for the first time in melanocytes. Interestingly, this induction remained significant when melanocytes were exposed to UV-A radiation only (320,400 nm), and stimulation of melanogenesis before irradiation further increased HO1 induction. These results were obtained with normal human cells after exposure to SSUV radiation, which mimicked natural sunlight. They provide new data related to gene expression and suggest that melanin in light skin could contribute to sunlight-induced genotoxicity and maybe to melanocyte transformation. [source] How do UV Photomorphogenic Responses Confer Water Stress Tolerance?,,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 6 2003Dennis C. Gitz ABSTRACT Although ultraviolet-B (UV-B) radiation is potentially harmful, it is an important component of terrestrial radiation to which plants have been exposed since invading land. Since then, plants have evolved mechanisms to avoid and repair UV radiation damage; therefore, it is not surprising that photomorphogenic responses to UV-B are often assumed to be adaptations to harmful radiation. This presupposes that the function of the observed responses is to prevent UV damage. It has been hypothesized that, as with blue light, UV-B provides a signal important for normal plant development and might be perceived within developing plants through nondestructive processes, perhaps through UV-specific signal perception mechanisms. UV signal perception can lead to photomorphogenic responses that may confer adaptive advantages under conditions associated with high-light environments, such as water stress. Plant responses to UV radiation in this regard include changes in leaf area, leaf thickness, stomatal density, photosynthetic pigment production and altered stem elongation and branching patterns. Such responses may lead to altered transpiration rates and water-use efficiencies. For example, we found that the cumulative effect of ambient UV-B radiation upon stomatal density and conductance can lead to altered water-use efficiencies. In field settings, UV might more properly be viewed as a photomorphogenic signal than as a stressor. Hence, it might be insufficient to attempt to fully evaluate the adaptive roles of plant responses to UV-B cues upon stress tolerance by the simultaneous application of UV and drought stress during development. We propose that rather than examining a plant's response to combinations of stressors one might also examine how a plant's response to UV induces tolerance to subsequently applied stresses. [source] Influence of UV Radiation on Four Freshwater Invertebrates,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 5 2000Alina Cywinska ABSTRACT Laboratory tests confirmed a negative and variable response of the following four species to artificial UV radiation: Cypridopsis vidua, an ostracode; Chironomus riparius, a midge larvae; Hyalella azteca, an amphipod; and Daphnia magna, a daphnid. Severe damage occurred at UV-B irradiance ranging from 50 to 80% of incident summer values. Under constant exposure to UV and photosynthetically active radiation (PAR) the acute lethal response was recorded at 0.3, 0.8, 0.8 and 4.9 W m,2 UV-B for D. magna, H. azteca, C. riparius and C. vidua, respectively. Sublethal UV-B damage to invertebrates included impaired movement, partial paralysis, changes in pigmentation and altered water balance (bloating). A series of UV-B, UV-A and PAR treatments, applied separately and in combination, revealed a positive role for both UV-A and PAR in slowing down UV-B damage. Mean lethal concentration values of the species typically more tolerant to UV and PAR (Cypridopsis, Chironomus) decreased conspicuously when both UV-A and PAR were eliminated. For UV-B,sensitive species (Hyalella, Daphnia) these differences were notably smaller. We suggest that this gradation of sensitivity among the tested species demonstrates potential differences in repairing mechanisms which seem to work more efficiently for ostracodes and chironomids than for amphipods and daphnids. Manipulations with a cellulose acetate filter showed that lower range UV-B (280,290 nm), produced by FS-40 lamps, may cause excessive UV damage to invertebrates. [source] Effect of UV irradiation on type I collagen fibril formation in neutral collagen solutionsPHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE, Issue 3 2001Julian M. Menter Background: Collagens have the well-known ability to spontaneously self-associate to form fibrils at physiological temperature and neutral pH in vitro and in vivo. Because solar UV may photochemically alter collagen, the kinetics of fibril formation may be modified. Thus, we have begun a systematic study of the effect of various UV wavebands on fibril formation. Methods: Citrate-soluble calf skin collagen (Elastin Products) was dissolved at 0.05% in 0.5 M HOAc, dialyzed over 2 days into two changes of 0.0327 M phosphate buffer, pH 7.0 at 4 °C, and centrifuged at 48 000×g. Photolysis was carried out at 4 °C with either (a) UVC (UVG,11 lamp), (b) filtered solar-simulating radiation (SSR) or UVA (SSR or UVL,21 lamp filtered with a 2.0 mm Schott WG 345 filter). Gelation was commenced by rapidly raising the temperature from 8 °C to 33 °C. Nucleation and growth were followed by turbidimetric measurements at 400 nm. Results: UVC radiation (0,17.3 J/cm2) resulted in a dose-dependent decrease in the rate of fibril growth. Under these conditions, concomitant collagen cross-linking and degradation occurred. Fibril nucleation, a prerequisite for growth, was rapid (threshold , 2 min) and was not affected by UVC, UVA or SSR. SSR (0,1320 J/cm2) caused a small decrease in growth rate and in the degree of fibril formation. UVA radiation (0,1080 J/cm2) had a similar effect. "Direct" photochemical damage thus paralleled absorption via various collagen chromophores, with UVC>SSR,UVA. The presence of riboflavin (RF) resulted in ground-state interactions that markedly altered both nucleation and growth kinetics. Irradiation with 29.6 J/cm2 UVA in the presence of RF photosensitizer caused relatively minor additional changes in fibrillation kinetics. Conclusions: These results collectively indicate that fibril formation is markedly dependent on specific ground state interactions and relatively insensitive to nonspecific UV damage. On the other hand, fibrils thus formed from photochemically altered collagen may have altered structural properties that could have subtle but unfavorable effects on the local dermal milieu in vivo. Notwithstanding, the relative insensitivity of fibrillogenesis to non-specific photochemical damage probably represents a favorable adaptation, overall, which tends to conserve the mechanical integrity of the skin. [source] Repair of UV damage in plants by nucleotide excision repair: Arabidopsis UVH1 DNA repair gene is a homolog of Saccharomyces cerevisiae Rad1THE PLANT JOURNAL, Issue 6 2000Zongrang Liu Summary To analyze plant mechanisms for resistance to UV radiation, mutants of Arabidopsis that are hypersensitive to UV radiation (designated uvh and uvr) have been isolated. UVR2 and UVR3 products were previously identified as photolyases that remove UV-induced pyrimidine dimers in the presence of visible light. Plants also remove dimers in the absence of light by an as yet unidentified dark repair mechanism and uvh1 mutants are defective in this mechanism. The UVH1 locus was mapped to chromosome 5 and the position of the UVH1 gene was further delineated by Agrobacterium -mediated transformation of the uvh1-1 mutant with cosmids from this location. Cosmid NC23 complemented the UV hypersensitive phenotype and restored dimer removal in the uvh1-1 mutant. The cosmid encodes a protein similar to the S. cerevisiae RAD1 and human XPF products, components of an endonuclease that excises dimers by nucleotide excision repair (NER). The uvh1-1 mutation creates a G to A transition in intron 5 of this gene, resulting in a new 3, splice site and introducing an in-frame termination codon. These results provide evidence that the Arabidopsis UVH1/AtRAD1 product is a subunit of a repair endonuclease. The previous discovery in Lilium longiflorum of a homolog of human ERCC1 protein that comprises the second subunit of the repair endonuclease provides additional evidence for the existence of the repair endonuclease in plants. The UVH1 gene is strongly expressed in flower tissue and also in other tissues, suggesting that the repair endonuclease is widely utilized for repair of DNA damage in plant tissues. [source] Oak leaf extract as topical antioxidant: Free radical scavenging and iron chelating activities and in vivo skin irritation potentialBIOFACTORS, Issue 4 2008Isabel F. Almeida Abstract The topical application of antioxidants may be beneficial for the protection of the skin against UV damage. An extract of Quercus robur leaves was prepared and evaluated considering its putative application as topical antioxidant. The solvent and extractive method selection was monitored by 1,1-diphenyl-2-picryl hydrazyl (DPPH) free radical scavenging activity and polyphenols extraction (measured by the Folin Ciocalteu assay). Iron chelating activity and the phenolic composition (HPLC/DAD) were assessed on the extract obtained under optimized conditions. Skin irritation potential was investigated by performing an in vivo patch test in 19 volunteers. The extraction solvent which resulted in the highest activity was ethanol:water (4:6) and thus it was selected for further preparation of this extract. The IC50a for the iron chelation and DPPH scavenging assays were 153.8 ± 26.3 ,g.mL,1 and 7.53 ± 0.71 ,g.mL,1 (mean ± SD), respectively. The total phenolic content was found to be 346.3 ± 6.7 mg gallic acid equivalents (GAE)/g extract (mean ± SD). Three phenolic compounds were identified in the extract namely: ellagic acid, rutin and hyperoside. The major identified component was ellagic acid. The patch test carried out showed that the extract can be regarded as safe for topical application. [source] Protective Effect of Sanguinarine on Ultraviolet B-mediated Damages in SKH-1 Hairless Mouse Skin: Implications for Prevention of Skin CancerPHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2007Haseeb Ahsan Excessive exposure of solar ultraviolet (UV) radiation, particularly its UVB component (280,320 nm), to human skin is the major cause of skin cancers. UV exposure also leads to the development of precancerous conditions such as actinic keratosis and elicits a variety of other adverse effects such as sunburn, inflammation, hyperplasia, immunosuppression and skin aging. Therefore, there is a need to intensify our efforts towards the development of novel mechanism-based approaches/agents for the protection of UVB-mediated damages. Chemoprevention is being investigated as a potential approach for the management of UV damages including skin cancer. We have earlier shown that sanguinarine, a benzophenanthridine alkaloid, inhibits UVB exposure-mediated damages in HaCaT keratinocytes. In this study, to determine the relevance of our in vitro findings to in vivo situations, we assessed the effects of sanguinarine on UVB-mediated damages in SKH-1 hairless mice. Our data demonstrated that a topical application of sanguinarine (5 ,mol 0.3 mL,1 ethanol per mouse), either as a pretreatment (30 min prior to UVB) or posttreatment (5 min after UVB), resulted in a significant decrease in UVB-mediated increases in skin edema, skin hyperplasia and infiltration of leukocytes. Further, sanguinarine treatments (pre and post) also resulted in a significant decrease in UVB mediated (1) generation of H2O2 and (2) increases in the protein levels of markers of tumor promotion/proliferation viz. ornithine decarboxylase (ODC), proliferating cell nuclear antigen (PCNA) and Kiel antigen-67. Based on this data, we suggest that sanguinarine could be developed as an agent for the management of conditions elicited by UV exposure including skin cancer. However, further detailed studies are needed to support this suggestion. [source] |