UHP Rocks (uhp + rock)

Distribution by Scientific Domains


Selected Abstracts


High-Si phengite, mineral chemistry and P,T evolution of ultra-high-pressure eclogites and calc-silicates from the Dabie Shan, eastern China

GEOLOGICAL JOURNAL, Issue 3-4 2000
Robert Schmid
Abstract A suite of coesite,eclogites and associated calc-silicate rocks from the ultra-high-pressure (UHP) belt in the Dabie Shan (eastern China) was investigated petrologically. Field relations and the presence of UHP minerals such as coesite, omphacite and high-Si phengite in the eclogites and the enclosing calc-silicates testify to a common metamorphic evolution for these two lithologies. Except for one sample, all bear phengite with unusually high silica contents (Si up to 3.7 per formula unit). Phengite occupies various textural positions indicating that different metamorphic stages are reflected by these white micas, which correlate with distinct mineral zonation patterns. Using the latest thermobarometric calibrations for eclogite-facies rocks, maximum pressure,temperature (P,T) conditions of 40,48 kbar at <,750°C were estimated for the peak-metamorphic mineral assemblages. These P,T conditions were calculated for both eclogitic garnet porphyroblasts with diffusion-controlled zoning as well as garnet porphyroblasts with prograde growth zonation patterns. Most samples were affected by a strong retrograde overprint mainly under eclogite- and amphibolite-facies conditions. Thermobarometry using mineral sets from different textural positions reveals cooling and decompression of the UHP rocks down to <,20 kbar at <,600°C for the bulk of the samples. Decompression and heating indicated by a few samples is interpreted to result from mineral chemical disequilibrium or late thermal influence. These new data show that subduction of continental crust in the Dabie Shan was deeper than previously thought, and also that some cooling and decompression took place at upper-mantle depths. Copyright © 2000 John Wiley & Sons, Ltd. [source]


Eclogites from the Chinese continental scientific drilling borehole, their petrology and different P-T evolutions

ISLAND ARC, Issue 4 2007
Yong-Feng Zhu
Abstract Four phengite-bearing eclogites, taken from different depths of the Chinese continental scientific drilling (CCSD) borehole in the Sulu ultrahigh pressure terrane, eastern China, were studied with the electron microprobe. The compositional zonations of garnet and omphacite are moderate, whereas phengite compositions generally vary significantly in a single sample from core to rim by decrease of the Si content. Various geothermobarometric methods were applied to constrain the P-T conditions of these eclogites on the basis of the compositional variability of the above minerals. The constrained P-T path for sample B218 is characterized by pressure decrease from ca 3.0 GPa (ca 600°C) to 1.3 GPa (ca 550°C). Eclogite B310 yielded P-T conditions of 3.0 GPa and 750°C. The path for eclogite B1008 starts at about 650°C and 3.6,3.9 GPa (stage I) followed by a pressure decrease to 2.8,3.0 GPa and a significant temperature rise (stages II and IIIa, 750,810°C). Afterwards, this rock cooled down to 620,660°C at still high pressures (2.5,2.7 GPa, stage IIIb). Retrograde conditions were about 670°C and 1.3 GPa (stage IV). Eclogite B1039 yielded a P-T path starting at ca 600°C and 3.3,3.9 GPa (stage I). A pressure decrease to about 3.0 GPa (stage II, 590,610°C) and then a moderate isobaric temperature increase to ca 630°C (stage III) followed. Stage IV is characterized by temperatures of 650°C at pressures close to 1.3 GPa. During and after this stage (hydrous) fluids partially rich in potassium penetrated the rocks causing minor changes. Relatively high oxygen fugacities led to andradite and magnetite among the newly formed minerals. We think that the above findings can be best explained by mass flow in a subduction channel. Thus, we conclude that the assembly of UHP rocks of the CCSD site, eclogites, quartzofeldspathic rocks, and peridotites, cannot represent a crustal section that was already coherent at UHP conditions as it is the common belief currently. The coherency was attained after significant exhumation of these UHP rocks. [source]


Geology of the Kokchetav UHP-HP metamorphic belt, Northern Kazakhstan

ISLAND ARC, Issue 3 2000
Y. Kaneko
Abstract Ultrahigh-pressure metamorphic (UHPM) rocks of the Kokchetav Massif of Kazakhstan contain metamorphic microdiamond and coesite inclusions inside rigid capsules such as garnet and zircon. Precambrian protoliths of the UHPM rocks were metamorphosed at around 530 Ma, at pressures of about 7 GPa, which suggests that crustal protoliths were subducted to depths of over 200 km. Primary UHPM minerals are poorly preserved due to partial obliteration by subsequent Barrovian overprint during exhumation and later collision events in Caledonian times. We report the results of detailed mapping of the Kokchetav Massif and use structural data to propose intrusion and exhumation mechanisms for the UHPM rocks. Detailed mapping revealed that many subvertical structures in the ultrahigh-pressure,high-pressure (UHP,HP) units were formed due to later folding. The primary structure appears to be subhorizontal and the total thickness of the UHP rocks is estimated at around 2 km. The first order structure is sandwich-like; that is, the UHP,HP units are separated from underlying low-P metamorphic rocks of the Daulet Series and from feebly metamorphosed to unmetamorphosed sedimentary strata on the top by subhorizontal faults. Kinematic indicators show top-to-the-south sense of shear along the top, and top-to-the-north displacement along the bottom boundaries. These shear senses, together with the observed metamorphic gradients, suggest that the thin UHPM sheet was extruded toward the north. We consider wedge extrusion to have been the most effective mechanism for the exhumation of the UHPM rocks. [source]


Microfabric characteristics and rheological significance of ultra-high-pressure metamorphosed jadeite-quartzite and eclogite from Shuanghe, Dabie Mountains, China

JOURNAL OF METAMORPHIC GEOLOGY, Issue 2 2010
L. WANG
Abstract Quantitative analysis of the structural evolution of jadeite-quartzite, a rare ultra-high pressure (UHP) rock type from the Dabie Mountains of eastern China, sheds light on the formation and evolution of UHP orogenic belts worldwide. Geological mapping of the Shuanghe area, where jadeite-quartzites crop out, was carried out to determine the spatial relationships between different UHP rocks within this orogen. The deformation mechanisms of jadeite-quartzite, geodynamical parameters (stress, strain, strain rate), and microstructure including lattice preferred orientation (LPO) were determined from six jadeite-quartzite samples from the Shuanghe area. LPOs of clinopyroxene (jadeite and omphacite), garnet, rutile and quartz from these jadeite-quartzite samples are compared with those of three eclogites preserving different degrees of deformation from the Shuanghe area. Microstructural LPOs of jadeite, omphacite, garnet, rutile and quartz were determined using electron backscattered diffraction (EBSD) analysis. Quartz fabrics were largely recrystallized during late, low-grade stages of deformation, whereas garnet shows no strong LPO patterns. Rutile fabrics show a weak LS fabric along [001]. Jadeite and omphacite show the strongest eclogite facies LPO patterns, suggesting that they may provide important information about mantle deformation patterns and control the rheology of deeply subducted continental crust. Microstructural data show that the jadeite LPO patterns are similar to those of omphacite and vary between L- and S-types, which correlate with prolate and oblate grain shape fabrics (SPO); quartz LPOs are monoclinic. Microstructural analysis using TEM shows that the dominant slip systems of jadeite in one sample are (100)[001], (110)[001] and (1 1 0)1/2[110], while in another sample, no dislocations are observed. Abundant dislocations in quartz were accommodated by the dominant slip system (0001)[110], indicating basal glide and represents regional shearing during the exhumation process. This suggests that dislocation creep is the dominant fundamental deformation mechanism in jadeite under UHP conditions. The protoliths of jadeite-quartzite, metasedimentary rocks from the northern passive continental margin of the Yangtze craton, experienced the same deep subduction and were deformed under similar rheological conditions as other UHP eclogite, marble and paragneiss. Experimental UHP deformation of quartzo-feldspathic gneiss with a chemical composition similar to the bulk continental crust has shown that the formation of a jadeite,stishovite rock is associated with a density increase of the host rock similar to the eclogite conversion from basaltic protoliths. The resulting rock can be denser than the surrounding mantle pyrolite up to depths of 660 km (24 GPa). Thus, processes of deep continental subduction may be better-understood through understanding the rheology and mechanical behaviour of jadeite. Jadeite-quartzites such as those from the Shuanghe may be exhumed remnants of deeply-subducted slabs of continental crust, other parts of which subducted past the ,depth of no return', and remain in the deep mantle. [source]


Petrology of coesite-bearing eclogite from Habutengsu Valley, western Tianshan, NW China and its tectonometamorphic implication

JOURNAL OF METAMORPHIC GEOLOGY, Issue 9 2009
Z. LÜ
Abstract Coesite inclusions in garnet have been found in eclogite boudins enclosed in coesite-bearing garnet micaschist in the Habutengsu Valley, Chinese western Tianshan, which are distinguished from their retrograde quartz by means of optical characteristics, CL imaging and Raman spectrum. The coesite-bearing eclogite is mainly composed of porphyroblastic garnet, omphacite, paragonite, glaucophane and barroisite, minor amounts of rutile and dotted (or banded) graphite. In addition to coesite and quartz, the zoned porphyroblastic garnet contains inclusions of omphacite, Na-Ca amphibole, calcite, albite, chlorite, rutile, ilmenite and graphite. Multi-phase inclusions (e.g. Czo + Pg ± Qtz, Grt II + Qtz and Chl + Pg) can be interpreted as breakdown products of former lawsonite and possibly chloritoid. Coesite occurs scattered within a compositionally homogenous but narrow domain of garnet (outer core), indicative of equilibrium at the UHP stage. The estimate by garnet-clinopyroxene thermometry yields peak temperatures of 420,520 °C at 2.7 GPa. Phase equilibrium calculations further constrain the P,T conditions for the UHP mineral assemblage Grt + Omp + Lws + Gln + Coe to 2.4,2.7 GPa and 470,510 °C. Modelled modal abundances of major minerals along a 5 °C km,1 geothermal gradient suggests two critical dehydration processes at ,430 and ,510 °C respectively. Computed garnet composition patterns are in good agreement with measured core-rim profiles. The petrological study of coesite-bearing eclogite in this paper provides insight into the metamorphic evolution in a cold subduction zone. Together with other reported localities of UHP rocks from the entire orogen of Chinese western Tianshan, it is concluded that the regional extent of UHP-LT metamorphism in Chinese western Tianshan is extensive and considerably larger than previously thought, although intensive retrogression has erased UHP-LT assemblages at most localities. [source]


Zircon U,Pb age and Hf isotope evidence for contrasting origin of bimodal protoliths for ultrahigh-pressure metamorphic rocks from the Chinese Continental Scientific Drilling project

JOURNAL OF METAMORPHIC GEOLOGY, Issue 8 2007
R.-X. CHEN
Abstract A combined study of zircon morphology, U,Pb ages and Hf isotopes as well as whole-rock major and trace elements was carried out for ultrahigh-pressure (UHP) eclogite and felsic gneiss from the main hole (MH) of the Chinese Continental Scientific Drilling (CCSD) project in the Sulu orogen. The results show contrasting Hf isotope compositions for bimodal UHP metaigneous rocks, pointing to contrasting origins for their protoliths (thus dual-bimodal compositions). The samples of interest were from two continuous core segments from CCSD MH at depths of 734.21,737.16 m (I) and 929.67,932.86 m (II) respectively. Zircon U,Pb dating for four samples from the two core segments yields two groups of ages at 784 ± 17 and 222 ± 3 Ma, respectively, corresponding to protolith formation during supercontinental rifting and metamorphic growth during continental collision. Although the Triassic UHP metamorphism significantly reset the zircon U,Pb system of UHP rocks, the Hf isotope compositions of igneous zircon can be used to trace their protolith origin. Contrasting types of initial Hf isotope ratios are, respectively, correlated with segments I and II, regardless of their lithochemistry. The first type shows positive ,Hf(t) values of 7.8 ± 3.1 to 6.0 ± 3.0, with young Hf model age of 1.03 and 1.11 Ga. The second type exhibits negative ,Hf(t) values of ,6.9 ± 1.6 to ,9.1 ± 1.1, with old Hf model ages of 2.11 and 2.25 Ga. It appears that the UHP rocks from the two segments have protoliths of contrasting origin. Consistent results are also obtained from their trace element compositions suggesting that mid-Neoproterozoic protoliths of bimodal UHP metaigneous rocks formed during supercontinental rifting at the northern margin of the South China Block. Thus, the first type of bimodal magmatism formed by rapid reworking of juvenile crust, whereas the second type of bimodal magmatism was principally generated by rift anatexis of Paleoproterozoic crust. Melting of orogenic lithosphere has potential to bring about bimodal magmatism with contrasting origins. Because arc,continent collision zones are the best place to accumulate both juvenile and ancient crusts, the contrasting types of bimodal magmatism are proposed to occur in an arc,continent collision orogen during the supercontinental rifting, in response to the attempted breakup of the supercontinent Rodinia at c. 780 Ma. [source]


SHRIMP U-Pb zircon dating from Sulu-Dabie dolomitic marble, eastern China: constraints on prograde, ultrahigh-pressure and retrograde metamorphic ages

JOURNAL OF METAMORPHIC GEOLOGY, Issue 7 2006
F. L. LIU
Abstract Laser Raman spectroscopy and cathodoluminescence (CL) images show that zircon from Sulu-Dabie dolomitic marbles is characterized by distinctive domains of inherited (detrital), prograde, ultrahigh-pressure (UHP) and retrograde metamorphic growths. The inherited zircon domains are dark-luminescent in CL images and contain mineral inclusions of Qtz + Cal + Ap. The prograde metamorphic domains are white-luminescent in CL images and preserve a quartz eclogite facies assemblage of Qtz + Dol + Grt + Omp + Phe + Ap, formed at 542,693 °C and 1.8,2.1 GPa. In contrast, the UHP metamorphic domains are grey-luminescent in CL images, retain the UHP assemblage of Coe + Grt + Omp + Arg + Mgs + Ap, and record UHP conditions of 739,866 °C and >5.5 GPa. The outermost retrograde rims have dark-luminescent CL images, and contain low- P minerals such as calcite, related to the regional amphibolite facies retrogression. Laser ablation ICP-MS trace-element data show striking difference between the inherited cores of mostly magmatic origin and zircon domains grown in response to prograde, UHP and retrograde metamorphism. SHRIMP U-Pb dating on these zoned zircon identified four discrete 206Pb/238U age groups: 1823,503 Ma is recorded in the inherited (detrital) zircon derived from various Proterozoic protoliths, the prograde domains record the quartz eclogite facies metamorphism at 254,239 Ma, the UHP growth domains occurred at 238,230 Ma, and the late amphibolite facies retrogressive overprint in the outermost rims was restricted to 218,206 Ma. Thus, Proterozoic continental materials of the Yangtze craton were subducted to 55,60 km depth during the Early Triassic and recrystallized at quartz eclogite facies conditions. Then these metamorphic rocks were further subducted to depths of 165,175 km in the Middle Triassic and experienced UHP metamorphism, and finally these UHP metamorphic rocks were exhumed to mid-crustal levels (about 30 km) in the Late Triassic and overprinted by regional amphibolite facies metamorphism. The subduction and exhumation rates deduced from the SHRIMP data and metamorphic P,T conditions are 9,10 km Myr,1 and 6.4 km Myr,1, respectively, and these rapid subduction,exhumation rates may explain the obtained P,T,t path. Such a fast exhumation suggests that Sulu-Dabie UHP rocks that returned towards crustal depths were driven by buoyant forces, caused as a consequence of slab breakoff at mantle depth. [source]


Ultrahigh-pressure metamorphism and exhumation of garnet peridotite in Pohorje, Eastern Alps

JOURNAL OF METAMORPHIC GEOLOGY, Issue 1 2006
M. JANÁK
Abstract New evidence for ultrahigh-pressure metamorphism (UHPM) in the Eastern Alps is reported from garnet-bearing ultramafic rocks from the Pohorje Mountains in Slovenia. The garnet peridotites are closely associated with UHP kyanite eclogites. These rocks belong to the Lower Central Austroalpine basement unit of the Eastern Alps, exposed in the proximity of the Periadriatic fault. Ultramafic rocks have experienced a complex metamorphic history. On the basis of petrochemical data, garnet peridotites could have been derived from depleted mantle rocks that were subsequently metasomatized by melts and/or fluids either in the plagioclase-peridotite or the spinel-peridotite field. At least four stages of recrystallization have been identified in the garnet peridotites based on an analysis of reaction textures and mineral compositions. Stage I was most probably a spinel peridotite stage, as inferred from the presence of chromian spinel and aluminous pyroxenes. Stage II is a UHPM stage defined by the assemblage garnet + olivine + low-Al orthopyroxene + clinopyroxene + Cr-spinel. Garnet formed as exsolutions from clinopyroxene, coronas around Cr-spinel, and porphyroblasts. Stage III is a decompression stage, manifested by the formation of kelyphitic rims of high-Al orthopyroxene, aluminous spinel, diopside and pargasitic hornblende replacing garnet. Stage IV is represented by the formation of tremolitic amphibole, chlorite, serpentine and talc. Geothermobarometric calculations using (i) garnet-olivine and garnet-orthopyroxene Fe-Mg exchange thermometers and (ii) the Al-in-orthopyroxene barometer indicate that the peak of metamorphism (stage II) occurred at conditions of around 900 °C and 4 GPa. These results suggest that garnet peridotites in the Pohorje Mountains experienced UHPM during the Cretaceous orogeny. We propose that UHPM resulted from deep subduction of continental crust, which incorporated mantle peridotites from the upper plate, in an intracontinental subduction zone. Sinking of the overlying mantle and lower crustal wedge into the asthenosphere (slab extraction) caused the main stage of unroofing of the UHP rocks during the Upper Cretaceous. Final exhumation was achieved by Miocene extensional core complex formation. [source]