Type I IFN (type + i_ifn)

Distribution by Scientific Domains

Terms modified by Type I IFN

  • type i ifn production
  • type i ifn response

  • Selected Abstracts


    Unexpected roles for DEAD-box protein 3 in viral RNA sensing pathways

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 4 2010
    Orla Mulhern
    Abstract Detection of viral nucleic acid within infected cells is essential to an effective anti-viral response. The retinoic acid-inducible gene-I-like receptors (RLR) form part of the virus detection repertoire and are critically important in sensing viral RNA in the cytoplasm. Efforts continue to define the signalling components downstream of RLR that are required to induce type I IFN (IFN-, and promoter stimulator-1) after viral infection. One surprising finding was that the Asp-Glu-Ala-Asp box helicase DEAD/H Box 3 (DDX3), known for some time to have a number of roles in cellular RNA regulation in the nucleus, has a role in the RLR cytoplasmic signalling pathway involved in promoter stimulator-1 induction. In this issue of the European Journal of Immunology, an article reports an additional distinct positive role for DDX3 in the RLR RNA sensing pathway. This further emphasises the importance of DDX3 in anti-viral immunity, and is consistent with the idea that viruses target DDX3 for immune evasion. [source]


    TLR pathways and IFN-regulatory factors: To each its own

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 2 2007
    Marco Colonna
    Abstract TLR trigger the induction of type I IFN (IFN-alpha/beta), providing a crucial mechanism of anti-viral defense. Until recently, TLR were thought to induce type I IFN responses by activating two transcription factors which belong to the IFN-regulatory factor (IRF) family, IRF-3 and IRF-7. TLR-3 and TLR-4 induce IFN-beta by activating IRF-3; TLR-9 induces IFN-alpha and IFN-beta through IRF-7, at least when engaged by type A CpG oligonucleotides (CpG-A) in plasmacytoid DC (pDC). In this issue of the European Journal of Immunology, it is demonstrated that TLR-9 induces IFN-beta when engaged by type B CpG oligonucleotides (CpG-B) in myeloid DC and macrophages. Remarkably, this response is independent of IRF-3/7 and, in fact, requires another IRF family member, IRF-1. IRF-1 is recruited by TLR-9 through the adaptor MyD88. Deficiency of the TLR-9,IRF-1,IFN-beta pathway results in impaired anti-viral responses not only in vitro but also in vivo. These results demonstrate that TLR induce IFN-alpha or IFN-beta responses by activating distinct IRF, depending on the TLR ligand and the cell type. These distinct TLR-IRF pathways may allow the immune system to tailor its responses to viral pathogens. See accompanying article http://dx.doi.org/10.1002/eji.200636767 [source]


    The porcine trophoblastic interferon-,, secreted by a polarized epithelium, has specific structural and biochemical properties

    FEBS JOURNAL, Issue 11 2002
    Avrelija Cenci
    At the time of implantation in the maternal uterus, the trophectoderm of the pig blastocyst is the source of a massive secretion of interferon-gamma (IFN-,), together with lesser amounts of IFN-,, a unique species of type I IFN. This trophoblastic IFN-, (TrIFN-,) is an unprecedented example of IFN-, being produced spontaneously by an epithelium. We therefore studied some of its structural and biochemical properties, by comparison with pig IFN-, from other sources, either natural LeIFN-, (from adult leucocytes), or recombinant. Biologically active TrIFN-, is a dimeric molecule, of which monomers are mainly composed of a truncated polypeptide chain with two glycotypes, unlike LeIFN-, which is formed of at least two polypeptide chains and four glycotypes. TrIFN-, collected in the uterus lumen was enzymatically deglycosylated and analysed by mass spectrometry (MALDI-TOF). The data revealed that the more abundant polypeptide has a mass of 14.74 kDa, corresponding to a C-terminal cleavage of 17 residues from the expected 143-residue long mature sequence. A minor polypeptide, with a mass of 12.63 kDa, corresponds to a C-terminal truncation of 36 amino acids. MALDI-TOF analysis of tryptic peptides from the glycosylated molecule(s) identifies a single branched carbohydrate motif, with six N -acetylgalactosamines, and no sialic acid. The only glycan microheterogeneity seems to reside in the number of l -fucose residues (one to three). The lack of the C-terminal cluster of basic residues, and the presence of nonsialylated glycans, result in a very low net charge of TrIFN-, molecule. However, the 17-residue truncation does not affect the antiproliferative activity of TrIFN-, on different cells, among which is a porcine uterine epithelial cell line. It is suggested that these specific properties might confer on TrIFN-, a particular ability to invade the uterine mucosa and exert biological functions beyond the endometrial epithelium. [source]


    Enhanced type I interferon signaling and recruitment of chemokine receptor CXCR3-expressing lymphocytes into the skin following treatment with the TLR7-agonist imiquimod

    JOURNAL OF CUTANEOUS PATHOLOGY, Issue 4 2005
    Joerg Wenzel
    Introduction:, Imiquimod (AldaraÔ) is an immune response modifier approved for the topical treatment of external genital and perianal warts which can mediate regression of several cutaneous malignancies [basal cell carcinoma (BCC), Bowen's disease, actinic keratosis, and metastasis of malignant melanoma]. Recently, it was discovered that imiquimod acts through the toll-like receptor (TLR) 7. We hypothesize that TLR7-signaling strongly induces the production of interferon (IFN) ,, which is able to enhance Th1-mediated cellular antiviral and antitumor immunity. Patients and methods:, In the present study we analyzed the expression of MxA, a protein specifically induced by type I IFNs during topical imiquimod treatment in several patients suffering from different cutaneous malignancies (BCC, cutaneous metastasis of melanoma, and breast cancer), and characterized the inflammatory infiltrate, along with the expression of chemokine receptor CXCR3, by immunohistochemistry. Results:, Treatment with the TLR7-agonist imiquimod induced a significant lesional lymphocytic inflammation, associated with strong expression of MxA, indicating the induction of type I IFN signaling. The extent of lesional MxA staining closely correlated with the number of infiltrating T lymphocytes and the expression of the chemokine receptor CXCR3, characteristic for Th1-biased immune responses. Discussion:, Our in vivo results suggest an important role for TLR7-induced production of type I IFN, which links innate and adaptive immunity and promotes specific Th1-biased cellular immune response capable of eliminating cutaneous malignancies. MxA appears to be a valuable parameter to demonstrate IFN-type I expression in imiquimod therapy. [source]


    Lesional and nonlesional skin from patients with untreated juvenile dermatomyositis displays increased numbers of mast cells and mature plasmacytoid dendritic cells

    ARTHRITIS & RHEUMATISM, Issue 9 2010
    Sheela Shrestha
    Objective To investigate the distribution of mast cells and dendritic cell (DC) subsets in paired muscle and skin (lesional/nonlesional) from untreated children with juvenile dermatomyositis (DM). Methods Muscle and skin biopsy samples (4 skin biopsy samples with active rash) from 7 patients with probable/definite juvenile DM were compared with muscle and skin samples from 10 healthy pediatric controls. Mast cell distribution and number were assessed by toluidine blue staining and analyzed by Student's t -test. Immunohistochemical analysis was performed to identify mature DCs, myeloid DCs (MDCs), and plasmacytoid DCs (PDCs) by using antibodies against DC-LAMP, blood dendritic cell antigen 1 (BDCA-1), and BDCA-2, respectively. Myxovirus resistance protein A (MxA) staining indicated active type I interferon (IFN) signaling; positive staining was scored semiquantitatively and analyzed using the Mann-Whitney U test. Results Both inflamed and nonlesional skin from patients with juvenile DM contained more mast cells than did skin from pediatric controls (P = 0.029), and comparable numbers of mast cells were present in lesional and nonlesional skin. Interestingly, mast cell numbers were greater in skin than in paired muscle tissue from patients with juvenile DM (P = 0.014) and were not increased in muscle from patients with juvenile DM compared with control muscle. Both muscle and skin from patients with juvenile DM showed more mature PDCs and MxA staining than did their corresponding control tissues (P < 0.05). In both muscle and skin from patients with juvenile DM and in pediatric control muscle, there were fewer MDCs than PDCs, and the distributions of MDCs and PDCs were similar in pediatric control skin samples. Conclusion The identification of mast cells in skin (irrespective of rash) from patients with juvenile DM, but not in paired muscle tissue, suggests that they have a specific role in juvenile DM skin pathophysiology. In skin from patients with juvenile DM, increased numbers of PDCs and increased expression of type I IFN,induced protein suggest a selective influence on T cell differentiation and subsequent effector function. [source]


    Interleukin-6 and type I interferon,regulated genes and chemokines mark disease activity in dermatomyositis

    ARTHRITIS & RHEUMATISM, Issue 11 2009
    Hatice Bilgic
    Objective Up-regulation of whole blood type I interferon (IFN),driven transcripts and chemokines has been described in a number of autoimmune diseases. An IFN gene expression "signature" is a candidate biomarker in patients with dermatomyositis (DM). This study was performed to evaluate the capacity of IFN-dependent peripheral blood gene and chemokine signatures and levels of proinflammatory cytokines to serve as biomarkers for disease activity in adult and juvenile DM. Methods Peripheral blood samples and clinical data were obtained from 56 patients with adult or juvenile DM. The type I IFN gene signature in the whole blood of patients with DM was defined by determining the expression levels of 3 IFN-regulated genes (IFIT1, G1P2, and IRF7) using quantitative real-time reverse transcription,polymerase chain reaction. Multiplexed immunoassays were used to quantify the serum levels of 4 type I IFN,regulated chemokines (IFN-inducible T cell , chemoattractant, IFN,-inducible 10-kd protein, monocyte chemotactic protein 1 [MCP-1], and MCP-2) and the serum levels of other proinflammatory cytokines, including interleukin-6 (IL-6). Results DM disease activity correlated significantly with the type I IFN gene signature (r = 0.41, P = 0.007) and with the type I IFN chemokine signature (r = 0.61, P < 0.0001). Furthermore, the serum levels of IL-6 were significantly correlated with disease activity (r = 0.45, P = 0.001). In addition, correlations between the serum levels of IL-6 and both the type I IFN gene signature (r = 0.47, P < 0.01) and the type I IFN chemokine signature (r = 0.71, P < 0.0001) were detected in patients with DM. Conclusion These results suggest that serum IL-6 production and the type I IFN gene signature are candidate biomarkers for disease activity in adult and juvenile DM. Coregulation of the expression of IFN-driven chemokines and IL-6 suggests a novel pathogenic linkage in DM. [source]


    The CGGGG insertion/deletion polymorphism of the IRF5 promoter is a strong risk factor for primary Sjögren's syndrome

    ARTHRITIS & RHEUMATISM, Issue 7 2009
    Corinne Miceli-Richard
    Objective Interferon regulatory factor 5 is a transcription factor involved in type I interferon (IFN) secretion. This study was undertaken to investigate whether a 5-bp (CGGGG insertion/deletion) promoter polymorphism is involved in genetic predisposition to primary Sjögren's syndrome (SS) and to assess the functional consequences of this polymorphism. Methods The exploratory cohort consisted of 185 patients with primary SS and 157 healthy controls, and the replication cohort consisted of 200 patients with primary SS and 282 healthy controls. Levels of IRF5 messenger RNA (mRNA) were assessed at baseline and after in vitro infection with reovirus in peripheral blood mononuclear cells (PBMCs) from 30 patients with primary SS and from salivary gland epithelial cells that had been cultured for 4 weeks from patients with primary SS or sicca symptoms. Results Carriage of the IRF5 4R CGGGG allele was associated with a greatly increased risk of primary SS in both cohorts (odds ratio 2.00 [95% confidence interval 1.5,2.7], P = 6.6 × 10,6). The CGGGG insertion/deletion polymorphism alone was sufficient to explain the association of primary SS with IRF5. The level of IRF5 mRNA in PBMCs depended significantly on genotype (P = 0.002) and was correlated with the levels of mRNA for the IFN-induced genes MX1 and IFITM1. Cultured salivary gland epithelial cells from patients carrying the 4R CGGGG IRF5 allele showed a high level of IRF5 mRNA (P = 0.04), which was amplified after reovirus infection (P = 0.026). Conclusion Our findings indicate an association of the CGGGG insertion/deletion polymorphism of the IRF5 promoter with primary SS. Patients carrying the 4R CGGGG IRF5 allele had a high level of mRNA for IRF5 in PBMCs and salivary gland epithelial cells, mainly after in vitro viral infection. Patients with high levels of mRNA for IRF5 also had high levels of mRNA for type I IFN,induced genes in PBMCs. [source]


    MicroRNA-146a contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins

    ARTHRITIS & RHEUMATISM, Issue 4 2009
    Yuanjia Tang
    Objective MicroRNA have recently been identified as regulators that modulate target gene expression and are involved in shaping the immune response. This study was undertaken to investigate the contribution of microRNA-146a (miR-146a), which was identified in the pilot expression profiling step, to the pathogenesis of systemic lupus erythematosus (SLE). Methods TaqMan microRNA assays of peripheral blood leukocytes were used for comparison of expression levels of microRNA between SLE patients and controls. Transfection and stimulation of cultured cells were conducted to determine the biologic function of miR-146a. Bioinformatics prediction and validation by reporter gene assay and Western blotting were performed to identify miR-146a targets. Results Profiling of 156 miRNA in SLE patients revealed the differential expression of multiple microRNA, including miR-146a, a negative regulator of innate immunity. Further analysis showed that underexpression of miR-146a negatively correlated with clinical disease activity and with interferon (IFN) scores in patients with SLE. Of note, overexpression of miR-146a reduced, while inhibition of endogenous miR-146a increased, the induction of type I IFNs in peripheral blood mononuclear cells (PBMCs). Furthermore, miR-146a directly repressed the transactivation downstream of type I IFN. At the molecular level, miR-146a could target IFN regulatory factor 5 and STAT-1. More importantly, introduction of miR-146a into the patients' PBMCs alleviated the coordinate activation of the type I IFN pathway. Conclusion The microRNA miR-146a is a negative regulator of the IFN pathway. Underexpression of miR-146a contributes to alterations in the type I IFN pathway in lupus patients by targeting the key signaling proteins. The findings provide potential novel strategies for therapeutic intervention. [source]


    Lupus-like disease and high interferon levels corresponding to trisomy of the type I interferon cluster on chromosome 9p

    ARTHRITIS & RHEUMATISM, Issue 5 2006
    Haoyang Zhuang
    Objective Systemic lupus erythematosus (SLE) is associated with type I interferons (IFNs) and can be induced by IFN, treatment. This study looked for evidence of autoimmunity in a pedigree consisting of 4 family members with a balanced translocation 9;21 and 2 members with an unbalanced translocation resulting in trisomy of the short (p) arm and part of the long (q) arm of chromosome 9. These latter 2 subjects had 3 copies of the IFN gene cluster. Methods Subjects were evaluated clinically and serologically for autoimmune disease. Expression levels of IFN,4, IFN,, the type I IFN,inducible gene Mx1, the type I IFN receptor, interleukin-6, and tumor necrosis factor , were determined by real-time polymerase chain reaction. Circulating plasmacytoid dendritic cells, the main IFN-producing cells, were quantified by flow cytometry. Results Both subjects with trisomy of chromosome 9p had a lupus-like syndrome with joint manifestations and antinuclear antibodies: one had anti-RNP and antiphospholipid autoantibodies, and the other had anti,Ro 60. The 3 family members with a balanced translocation 9;21 had no clinical or serologic evidence of autoimmunity, similar to that in relatives who were unaffected by the chromosomal translocation. In the 2 subjects with trisomy of 9p, high levels of IFN,/, (comparable with those found in patients with SLE), increased signaling through the IFN receptor (as indicated by high Mx1 expression), and low levels of circulating plasmacytoid dendritic cells (as observed in patients with SLE) were evident. These abnormalities were not seen in individuals with a balanced translocation. Conclusion Trisomy of the type I IFN cluster of chromosome 9p was associated with lupus-like autoimmunity and increased IFN,/, and IFN receptor signaling. The data support the idea that abnormal regulation of type I IFN production is involved in the pathogenesis of SLE. [source]


    Breastfeeding is associated with the production of type I interferon in infants infected with influenza virus

    ACTA PAEDIATRICA, Issue 10 2010
    Guillermina A Melendi
    Abstract Background:, Breast milk-mediated protection against respiratory viruses is well established. However, protective mechanisms are unclear. Type I interferons (IFN) mediate host defence against respiratory viruses, particularly influenza virus. The relationship among type I IFN, respiratory viral infections and breastfeeding has not been explored. Methods:, Type I IFN responses were studied by ELISA and real time PCR in nasal secretions of infants experiencing their first respiratory infection. Modulation of IFN by breastfeeding and other variables affecting severity during viral infection was explored. Results:, One hundred and twenty infants were positive by RT-PCR for influenza virus (n = 24), human metapneumovirus (hMPV) (n = 30) or respiratory syncytial virus (RSV) (n = 66). Type I IFNs were detected more frequently in infants infected with influenza virus than in those infected with RSV or hMPV. Breastfeeding promoted higher rates and levels of type I IFN only in infants infected with influenza virus. No effect on IFN production was observed for age, gender or smoking. Conclusion:, Our study confirms that type I IFN production is detected more frequently in infants infected with influenza virus. Importantly, higher rates and levels of type I IFN in these infants are associated with breastfeeding. These observations suggest that breast milk can protect against respiratory viruses by activating innate antiviral mechanisms in the host. [source]


    Nucleic acid sensing receptors in systemic lupus erythematosus: development of novel DNA- and/or RNA-like analogues for treating lupus

    CLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 2 2010
    P. Lenert
    Summary Double-stranded (ds) DNA, DNA- or RNA-associated nucleoproteins are the primary autoimmune targets in SLE, yet their relative inability to trigger similar autoimmune responses in experimental animals has fascinated scientists for decades. While many cellular proteins bind non-specifically negatively charged nucleic acids, it was discovered only recently that several intracellular proteins are involved directly in innate recognition of exogenous DNA or RNA, or cytosol-residing DNA or RNA viruses. Thus, endosomal Toll-like receptors (TLR) mediate responses to double-stranded RNA (TLR-3), single-stranded RNA (TLR-7/8) or unmethylated bacterial cytosine (phosphodiester) guanine (CpG)-DNA (TLR-9), while DNA-dependent activator of IRFs/Z-DNA binding protein 1 (DAI/ZBP1), haematopoietic IFN-inducible nuclear protein-200 (p202), absent in melanoma 2 (AIM2), RNA polymerase III, retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) mediate responses to cytosolic dsDNA or dsRNA, respectively. TLR-induced responses are more robust than those induced by cytosolic DNA- or RNA- sensors, the later usually being limited to interferon regulatory factor 3 (IRF3)-dependent type I interferon (IFN) induction and nuclear factor (NF)-,B activation. Interestingly, AIM2 is not capable of inducing type I IFN, but rather plays a role in caspase I activation. DNA- or RNA-like synthetic inhibitory oligonucleotides (INH-ODN) have been developed that antagonize TLR-7- and/or TLR-9-induced activation in autoimmune B cells and in type I IFN-producing dendritic cells at low nanomolar concentrations. It is not known whether these INH-ODNs have any agonistic or antagonistic effects on cytosolic DNA or RNA sensors. While this remains to be determined in the future, in vivo studies have already shown their potential for preventing spontaneous lupus in various animal models of lupus. Several groups are exploring the possibility of translating these INH-ODNs into human therapeutics for treating SLE and bacterial DNA-induced sepsis. [source]