Type Cytochromes (type + cytochrome)

Distribution by Scientific Domains


Selected Abstracts


Impacts of Shewanella oneidensis c -type cytochromes on aerobic and anaerobic respiration

MICROBIAL BIOTECHNOLOGY, Issue 4 2010
Haichun Gao
Summary Shewanella are renowned for their ability to utilize a wide range of electron acceptors (EA) for respiration, which has been partially accredited to the presence of a large number of the c -type cytochromes. To investigate the involvement of c -type cytochrome proteins in aerobic and anaerobic respiration of Shewanella oneidensis Mr -1, 36 in-frame deletion mutants, among possible 41 predicted, c -type cytochrome genes were obtained. The potential involvement of each individual c -type cytochrome in the reduction of a variety of EAs was assessed individually as well as in competition experiments. While results on the well-studied c -type cytochromes CymA(SO4591) and MtrC(SO1778) were consistent with previous findings, collective observations were very interesting: the responses of S. oneidensis Mr -1 to low and highly toxic metals appeared to be significantly different; CcoO, CcoP and PetC, proteins involved in aerobic respiration in various organisms, played critical roles in both aerobic and anaerobic respiration with highly toxic metals as EA. In addition, these studies also suggested that an uncharacterized c -type cytochrome (SO4047) may be important to both aerobiosis and anaerobiosis. [source]


MicroReview: Impact of the bacterial type I cytochrome c maturation system on different biological processes

MOLECULAR MICROBIOLOGY, Issue 6 2005
Nicholas P. Cianciotto
Summary In the ,-, ,- and ,- Proteobacteria, the so-called cytochrome c maturation (Ccm) system is known to promote the covalent attachment of the haem to periplasmic apocytochrome c. However, in species of Pseudomonas, Rhizobium, Paracoccus and Legionella, mutations in ccm genes result in phenotypes that cannot be readily explained by the simple loss of a c -type cytochrome. These phenotypes include loss of siderophore production and utilization, reduced abilities to grow in low-iron conditions and in mammalian and protozoan host cells, and alterations in copper sensitivity and manganese oxidation. These various data suggest that Ccm proteins may perform one or more functions in addition to Ccm, which are critical for bacterial physiology and growth. Novel hypotheses that should be explored include the utilization of Ccm-associated haem for processes besides attachment to apocytochrome c, the export of a non-haem compound through the Ccm system, and the negative effects of protoporphyrin IX accumulation. [source]


Redox enzymes in the plant plasma membrane and their possible roles

PLANT CELL & ENVIRONMENT, Issue 12 2000
A. Bérczi
ABSTRACT Purified plasma membrane (PM) vesicles from higher plants contain redox proteins with low-molecular-mass prosthetic groups such as flavins (both FMN and FAD), hemes, metals (Cu, Fe and Mn), thiol groups and possibly naphthoquinone (vitamin K1), all of which are likely to participate in redox processes. A few enzymes have already been identified: Monodehydroascorbate reductase (EC 1.6.5.4) is firmly bound to the cytosolic surface of the PM where it might be involved in keeping both cytosolic and, together with a b -type cytochrome, apoplastic ascorbate reduced. A malate dehydrogenase (EC 1.1.1.37) is localized on the inner side of the PM. Several NAD(P)H-quinone oxidoreductases have been purified from the cytocolic surface of the PM, but their function is still unknown. Different forms of nitrate reductase (EC 1.6.6.1,3) are found attached to, as well as anchored in, the PM where they may act as a nitrate sensor and/or contribute to blue-light perception, although both functions are speculative. Ferric-chelate-reducing enzymes (EC 1.6.99.13) are localized and partially characterized on the inner surface of the PM but they may participate only in the reduction of ferric-chelates in the cytosol. Very recently a ferric-chelate-reducing enzyme containing binding sites for FAD, NADPH and hemes has been identified and suggested to be a trans -PM protein. This enzyme is involved in the reduction of apoplastic iron prior to uptake of Fe2+ and is induced by iron deficiency. The presence of an NADPH oxidase, similar to the so-called respiratory burst oxidase in mammals, is still an open question. An auxin-stimulated and cyanide-insensitive NADH oxidase (possibly a protein disulphide reductase) has been characterized but its identity is still awaiting independent confirmation. Finally, the only trans -PM redox protein which has been partially purified from plant PM so far is a high-potential and ascorbate-reducible b -type cytochrome. In co-operation with vitamin K1 and an NAD(P)H-quinone oxidoreductase, it may participate in trans -PM electron transport. [source]


Structure at 1.5,Å resolution of cytochrome c552 with its flexible linker segment, a membrane-anchored protein from Paracoccus denitrificans

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 7 2010
Chitra Rajendran
Electron transfer (ET) between the large membrane-integral redox complexes in the terminal part of the respiratory chain is mediated either by a soluble c -type cytochrome, as in mitochondria, or by a membrane-anchored cytochrome c, as described for the ET chain of the bacterium Paracoccus denitrificans. Here, the structure of cytochrome c552 from P. denitrificans with the linker segment that attaches the globular domain to the membrane anchor is presented. Cytochrome c552 including the linker segment was crystallized and its structure was determined by molecular replacement. The structural features provide functionally important information. The prediction of the flexibility of the linker region [Berry & Trumpower (1985), J. Biol. Chem.260, 2458,2467] was confirmed by our crystal structure. The N-terminal region from residues 13 to 31 is characterized by poor electron density, which is compatible with high mobility of this region. This result indicates that this region is highly flexible, which is functionally important for this protein to shuttle electrons between complexes III and IV in the respiratory chain. Zinc present in the crystallization buffer played a key role in the successful crystallization of this protein. It provided rigidity to the long negatively charged flexible loop by coordinating negatively charged residues from two different molecules and by enhancing the crystal contacts. [source]


Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group

ENVIRONMENTAL MICROBIOLOGY, Issue 2 2010
Anke Meyerdierks
Summary Microbial consortia mediating the anaerobic oxidation of methane with sulfate are composed of methanotrophic Archaea (ANME) and Bacteria related to sulfate-reducing Deltaproteobacteria. Cultured representatives are not available for any of the three ANME clades. Therefore, a metagenomic approach was applied to assess the genetic potential of ANME-1 archaea. In total, 3.4 Mbp sequence information was generated based on metagenomic fosmid libraries constructed directly from a methanotrophic microbial mat in the Black Sea. These sequence data represent, in 30 contigs, about 82,90% of a composite ANME-1 genome. The dataset supports the hypothesis of a reversal of the methanogenesis pathway. Indications for an assimilatory, but not for a dissimilatory sulfate reduction pathway in ANME-1, were found. Draft genome and expression analyses are consistent with acetate and formate as putative electron shuttles. Moreover, the dataset points towards downstream electron-accepting redox components different from the ones known from methanogenic archaea. Whereas catalytic subunits of [NiFe]-hydrogenases are lacking in the dataset, genes for an [FeFe]-hydrogenase homologue were identified, not yet described to be present in methanogenic archaea. Clustered genes annotated as secreted multiheme c -type cytochromes were identified, which have not yet been correlated with methanogenesis-related steps. The genes were shown to be expressed, suggesting direct electron transfer as an additional possible mode to shuttle electrons from ANME-1 to the bacterial sulfate-reducing partner. [source]


Hydrogenase- and outer membrane c -type cytochrome-facilitated reduction of technetium(VII) by Shewanella oneidensis MR-1

ENVIRONMENTAL MICROBIOLOGY, Issue 1 2008
Matthew J. Marshall
Summary Pertechnetate, 99Tc(VII)O4,, is a highly mobile radionuclide contaminant at US Department of Energy sites that can be enzymatically reduced by a range of anaerobic and facultatively anaerobic microorganisms, including Shewanella oneidensis MR-1, to poorly soluble Tc(IV)O2(s). In other microorganisms, Tc(VII)O4, reduction is generally considered to be catalysed by hydrogenase. Here, we provide evidence that although the NiFe hydrogenase of MR-1 was involved in the H2 -driven reduction of Tc(VII)O4,[presumably through a direct coupling of H2 oxidation and Tc(VII) reduction], the deletion of both hydrogenase genes did not completely eliminate the ability of MR-1 to reduce Tc(VII). With lactate as the electron donor, mutants lacking the outer membrane c -type cytochromes MtrC and OmcA or the proteins required for the maturation of c -type cytochromes were defective in reducing Tc(VII) to nanoparticulate TcO2·nH2O(s) relative to MR-1 or a NiFe hydrogenase mutant. In addition, reduced MtrC and OmcA were oxidized by Tc(VII)O4,, confirming the capacity for direct electron transfer from these OMCs to TcO4,. c -Type cytochrome-catalysed Tc(VII) reduction could be a potentially important mechanism in environments where organic electron donor concentrations are sufficient to allow this reaction to dominate. [source]


Functional characterization of the evolutionarily divergent fern plastocyanin

FEBS JOURNAL, Issue 16 2004
José A. Navarro
Plastocyanin (Pc) is a soluble copper protein that transfers electrons from cytochrome b6f to photosystem I (PSI), two protein complexes that are localized in the thylakoid membranes in chloroplasts. The surface electrostatic potential distribution of Pc plays a key role in complex formation with the membrane-bound partners. It is practically identical for Pcs from plants and green algae, but is quite different for Pc from ferns. Here we report on a laser flash kinetic analysis of PSI reduction by Pc from various eukaryotic and prokaryotic organisms. The reaction of fern Pc with fern PSI fits a two-step kinetic model, consisting of complex formation and electron transfer, whereas other plant systems exhibit a mechanism that requires an additional intracomplex rearrangement step. The fern Pc interacts inefficiently with spinach PSI, showing no detectable complex formation. This can be explained by assuming that the unusual surface charge distribution of fern Pc impairs the interaction. Fern PSI behaves in a similar way as spinach PSI in reaction with other Pcs. The reactivity of fern Pc towards several soluble c -type cytochromes, including cytochrome f, has been analysed by flavin-photosensitized laser flash photolysis, demonstrating that the specific surface motifs for the interaction with cytochrome f are conserved in fern Pc. [source]


The cytochrome cbb3 from Pseudomonas stutzeri displays nitric oxide reductase activity

FEBS JOURNAL, Issue 24 2001
Elena Forte
The cytochrome cbb3 is an isoenzyme in the family of cytochrome c oxidases. This protein purified from Pseudomonas stutzeri displays a cyanide-sensitive nitric oxide reductase activity (Vmax=100±9 mol NO·mol ·min,1 and Km=12±2.5 µm), which is lost upon denaturation. This enzyme is only partially reduced by ascorbate, and readily re-oxidized by NO under anaerobic conditions at a rate consistent with the turnover number for NO consumption. As shown by transient spectroscopy experiments and singular value decomposition (SVD) analysis, these results suggest that the cbb3 -type cytochromes, sharing structural features with bacterial nitric oxide reductases, are the enzymes retaining the highest NO reductase activity within the heme-copper oxidase superfamily. [source]


Resonance Raman study of multihemic c -type cytochromes from Desulfuromonas acetoxidans

FEBS JOURNAL, Issue 4 2000
Geneviève Chottard
Two multihemic cytochromes c from the sulfur reducing bacteria Desulfuromonas acetoxidans have been studied by optical and resonance Raman spectroscopy: cytochrome c551.5, a trihemic cytochrome and cytochrome c Mr 50 000, a recently isolated high molecular mass cytochrome. The redox and Raman characteristics of cytochrome c551.5 are compared to those of the tetrahemic cytochromes c3 from Desulfovibrio. While the redox behavior, followed by spectroelectrochemistry, is similar to that of cytochrome c3, showing the same conformational change after reduction of the highest potential heme, the Raman data show a contribution from a His, form of the axial ligands and lead to the assignment of a band at 218 cm,1 to the Fe(III),(His)2 stretching vibration. The Raman data on cytochrome c Mr 50 000 are in favor of an entirely low spin species with two different sets of axial ligands. A partially reduced state is easily accessible by ascorbate addition. [source]


Impacts of Shewanella oneidensis c -type cytochromes on aerobic and anaerobic respiration

MICROBIAL BIOTECHNOLOGY, Issue 4 2010
Haichun Gao
Summary Shewanella are renowned for their ability to utilize a wide range of electron acceptors (EA) for respiration, which has been partially accredited to the presence of a large number of the c -type cytochromes. To investigate the involvement of c -type cytochrome proteins in aerobic and anaerobic respiration of Shewanella oneidensis Mr -1, 36 in-frame deletion mutants, among possible 41 predicted, c -type cytochrome genes were obtained. The potential involvement of each individual c -type cytochrome in the reduction of a variety of EAs was assessed individually as well as in competition experiments. While results on the well-studied c -type cytochromes CymA(SO4591) and MtrC(SO1778) were consistent with previous findings, collective observations were very interesting: the responses of S. oneidensis Mr -1 to low and highly toxic metals appeared to be significantly different; CcoO, CcoP and PetC, proteins involved in aerobic respiration in various organisms, played critical roles in both aerobic and anaerobic respiration with highly toxic metals as EA. In addition, these studies also suggested that an uncharacterized c -type cytochrome (SO4047) may be important to both aerobiosis and anaerobiosis. [source]


Substrate specificity of three cytochrome c haem lyase isoenzymes from Wolinella succinogenes: unconventional haem c binding motifs are not sufficient for haem c attachment by NrfI and CcsA1

MOLECULAR MICROBIOLOGY, Issue 1 2010
Melanie Kern
Summary Bacterial c -type cytochrome maturation is dependent on a complex enzymic machinery. The key reaction is catalysed by cytochrome c haem lyase (CCHL) that usually forms two thioether bonds to attach haem b to the cysteine residues of a haem c binding motif (HBM) which is, in most cases, a CX2CH sequence. Here, the HBM specificity of three distinct CCHL isoenzymes (NrfI, CcsA1 and CcsA2) from the Epsilonproteobacterium Wolinella succinogenes was investigated using either W. succinogenes or Escherichia coli as host organism. Several reporter c -type cytochromes were employed including cytochrome c nitrite reductases (NrfA) from E. coli and Campylobacter jejuni that differ in their active-site HBMs (CX2CK or CX2CH). W. succinogenes CcsA2 was found to attach haem to standard CX2CH motifs in various cytochromes whereas other HBMs were not recognized. NrfI was able to attach haem c to the active-site CX2CK motif of both W. succinogenes and E. coli NrfA, but not to NrfA from C. jejuni. Different apo-cytochrome variants carrying the CX15CH motif, assumed to be recognized by CcsA1 during maturation of the octahaem cytochrome MccA, were not processed by CcsA1 in either W. succinogenes or E. coli. It is concluded that the dedicated CCHLs NrfI and CcsA1 attach haem to non-standard HBMs only in the presence of further, as yet uncharacterized structural features. Interestingly, it proved impossible to delete the ccsA2 gene from the W. succinogenes genome, a finding that is discussed in the light of the available genomic, proteomic and functional data on W. succinogenes c -type cytochromes. [source]


Two small c -type cytochromes affect virulence gene expression in Bacillus anthracis

MOLECULAR MICROBIOLOGY, Issue 1 2009
Adam C. Wilson
Summary Regulated expression of the genes for anthrax toxin proteins is essential for the virulence of the pathogenic bacterium Bacillus anthracis. Induction of toxin gene expression depends on several factors, including temperature, bicarbonate levels, and metabolic state of the cell. To identify factors that regulate toxin expression, transposon mutagenesis was performed under non-inducing conditions and mutants were isolated that untimely expressed high levels of toxin. A number of these mutations clustered in the haem biosynthetic and cytochrome c maturation pathways. Genetic analysis revealed that two haem-dependent, small c -type cytochromes, CccA and CccB, located on the extracellular surface of the cytoplasmic membrane, regulate toxin gene expression by affecting the expression of the master virulence regulator AtxA. Deregulated AtxA expression in early exponential phase resulted in increased expression of toxin genes in response to loss of the CccA-CccB signalling pathway. This is the first function identified for these two small c -type cytochromes of Bacillus species. Extension of the transposon screen identified a previously uncharacterized protein, BAS3568, highly conserved across many bacterial and archeal species, as involved in cytochrome c activity and virulence regulation. These findings are significant not only to virulence regulation in B. anthracis, but also to analysis of virulence regulation in many pathogenic bacteria and to the study of cytochrome c activity in Gram-positive bacteria. [source]


Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c -type cytochromes

MOLECULAR MICROBIOLOGY, Issue 1 2007
Liang Shi
Summary Dissimilatory reduction of metal (e.g. Fe, Mn) (hydr)oxides represents a challenge for microorganisms, as their cell envelopes are impermeable to metal (hydr)oxides that are poorly soluble in water. To overcome this physical barrier, the Gram-negative bacteria Shewanella oneidensis MR-1 and Geobacter sulfurreducens have developed electron transfer (ET) strategies that require multihaem c -type cytochromes (c -Cyts). In S. oneidensis MR-1, multihaem c -Cyts CymA and MtrA are believed to transfer electrons from the inner membrane quinone/quinol pool through the periplasm to the outer membrane. The type II secretion system of S. oneidensis MR-1 has been implicated in the reduction of metal (hydr)oxides, most likely by translocating decahaem c -Cyts MtrC and OmcA across outer membrane to the surface of bacterial cells where they form a protein complex. The extracellular MtrC and OmcA can directly reduce solid metal (hydr)oxides. Likewise, outer membrane multihaem c -Cyts OmcE and OmcS of G. sulfurreducens are suggested to transfer electrons from outer membrane to type IV pili that are hypothesized to relay the electrons to solid metal (hydr)oxides. Thus, multihaem c -Cyts play critical roles in S. oneidensis MR-1- and G. sulfurreducens -mediated dissimilatory reduction of solid metal (hydr)oxides by facilitating ET across the bacterial cell envelope. [source]


Extracytoplasmic prosthetic group ligation to apoproteins: maturation of c -type cytochromes

MOLECULAR MICROBIOLOGY, Issue 3 2006
Serdar Turkarslan
Summary In all organisms, haem is post-translationally and covalently attached to c apocytochromes to produce c holocytochromes via a process called c -type cytochromes maturation, which involves numerous components. In bacteria it was not clear which of these components catalyses the extracytoplasmic haem,apocytochrome ligation per se. In this issue of Molecular Microbiology, Feissner and colleagues report that a single polypeptide from Helicobacter pylori, corresponding to the fusion of two proteins found in other organisms, performs haem ligation to a coexpressed Bordetella pertussis apocytochrome c in an Escherichia coli mutant lacking its own cytochrome c maturation proteins. This simple experimental system pinpoints the components catalysing extracytoplasmic covalent haem ligation and raises intriguing issues about the requirements for delivery of haem and apocytochrome c substrates to produce c holocytochromes. [source]