Bean Aphid (bean + aphid)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Bean Aphid

  • black bean aphid


  • Selected Abstracts


    THE ROLE OF BACTERIAL SYMBIONTS IN AMINO ACID COMPOSITION OF BLACK BEAN APHIDS

    INSECT SCIENCE, Issue 3 2003
    Xue-xia Miao
    Abstract To evaluate the role of bacterial symbionts (Buchnera spp.) in the black bean aphids (Aphis craccivora Koch), the aphids were treated with the antibiotic, rifampicin, to eliminate their intracellular symbiotic bacteria. Analysis of protein and amino acid concentration in 7-day-old of aposymbiotic aphids showed that the total protein content per mg fresh weight was significantly reduced by 29%, but free amino acid titers were increased by 17%. The ratio of the essential amino acids was in general only around 20% essential amino acids in phloem sap of broad bean, whereas it was 44% and 37% in symbiotic and aposymbiotic aphids, respectively, suggesting that the composition of the free amino acids was unbalanced. For example, the essential amino acid, threonine represented 21.6% of essential amino acids in symbiotic aphids, but it was only 16.7% in aposymbiotic aphids. Likewise, two nonessential amino acids, tyrosine and serine, represented 8.9% and 5.6% of total amino acids in symbiontic aphids, respectively, but they enhanced to 21.1% and 13.6% in aposymbiotic aphids. It seems likely that the elevated free amino acid concentration in aposymbiotic aphids was caused by the limited protein anabolism as the result of the unbalanced amino acid composition. [source]


    Ample genetic variation but no evidence for genotype specificity in an all-parthenogenetic host,parasitoid interaction

    JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 3 2010
    C. SANDROCK
    Abstract Antagonistic coevolution between hosts and parasites can result in negative frequency-dependent selection and may thus be an important mechanism maintaining genetic variation in populations. Negative frequency-dependence emerges readily if interactions between hosts and parasites are genotype-specific such that no host genotype is most resistant to all parasite genotypes, and no parasite genotype is most infective on all hosts. Although there is increasing evidence for genotype specificity in interactions between hosts and pathogens or microparasites, the picture is less clear for insect host,parasitoid interactions. Here, we addressed this question in the black bean aphid (Aphis fabae) and its most important parasitoid Lysiphlebus fabarum. Because both antagonists are capable of parthenogenetic reproduction, this system allows for powerful tests of genotype × genotype interactions. Our test consisted of exposing multiple host clones to different parthenogenetic lines of parasitoids in all combinations, and this experiment was repeated with animals from four different sites. All aphids were free of endosymbiotic bacteria known to increase resistance to parasitoids. We observed ample genetic variation for host resistance and parasitoid infectivity, but there was no significant host clone × parasitoid line interaction, and this result was consistent across the four sites. Thus, there is no evidence for genotype specificity in the interaction between A. fabae and L. fabarum, suggesting that the observed variation is based on rather general mechanisms of defence and attack. [source]


    A potent, morph-specific parturition stimulant in the overwintering host plant of the black bean aphid, Aphis fabae

    PHYSIOLOGICAL ENTOMOLOGY, Issue 3 2001
    Glen Powell
    Abstract. The black bean aphid, Aphis fabae Scopoli, has a host-alternating life cycle. Winged female autumn migrants (gynoparae) develop on numerous summer host plants but as adults will only colonize the winter host (spindle, Euonymus europaeus L.). When stylet activities of gynoparae were electrically recorded during access to a spindle leaf, the insects spent the majority (75%) of the 6-h experimental period penetrating the plant surface and a large proportion of it (44%) ingesting from either phloem or xylem vessels. Most (95%) gynoparae initiated reproduction on spindle, producing 4.15 ± 0.59 offspring per adult by the end of the experiment (mean ± SEM). By contrast, gynoparae placed on a seedling of their natal, summer host (broad bean, Vicia faba L.) penetrated the plant for only 39% of the available time, rarely ingested plant sap and never reproduced. The number of nymphs deposited on spindle leaves was not correlated with the occurrence or duration of ingestion from vascular tissues, suggesting that parturition stimulants are detected before feeding, probably during penetration of nonvascular cells. Presentation of an aqueous spindle extract to the aphids in artificial feeding chambers showed that water-soluble spindle factors evoke stimulation of parturition by gynoparae in 72-h bioassays. The stimulant was extremely potent, remaining active until the total extracted material was diluted to less than 10 p.p.m. Stylet activities and reproductive responses were also evaluated for summer winged females (alate virginoparae), which have a broad host range, and will colonize both bean and spindle under laboratory conditions. On both of these plant species, virginoparae often ingested plant sap and deposited nymphs during the 6-h electrical recording experiment (producing 4.60 ± 0.48 offspring on bean; 2.70 ± 0.35 on spindle: mean ± SEM), but no significant correlations were found between reproduction and the occurrence or duration of particular stylet activities. Aqueous host-plant extracts had no effect on the numbers of offspring deposited by virginoparae in artificial feeding chambers, showing that this form of the aphid is not responsive to the spindle-derived parturition stimulant. The results highlight the need for more information on the factors determining host acceptance and parturition by polyphagous aphid phenotypes. [source]


    Variation and covariation of life history traits in aphids are related to infection with the facultative bacterial endosymbiont Hamiltonella defensa

    BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2010
    LUIS E. CASTAÑEDA
    Host,symbiont associations play an important role in insects. In aphids, facultative symbionts affect host plant use and increase thermal tolerance and resistance to natural enemies. In spite of these beneficial effects on aphid fitness, the frequency of facultative symbionts in aphids ranges from low to intermediate. Tradeoffs induced by symbionts could prevent the fixation of symbionts in aphid populations. Therefore, we studied the life history traits and correlations between them in 21 clones of the black bean aphid, Aphis fabae, seven of which were infected with the facultative endosymbiont Hamiltonella defensa. We found that clones harbouring H. defensa exhibited significantly higher body mass at maturity and offspring production, and a marginally higher intrinsic rate of increase. However, development time and offspring body size did not differ between symbiont-free and infected clones. In addition, body mass at maturity was positively correlated with offspring production, offspring body size and intrinsic rate of increase, whereas development time was negatively correlated with body mass at maturity, offspring production and offspring body size. Excluding infected clones had little effect on these correlations; only correlations between body mass at maturity and offspring production, and between development time and offspring body size, became nonsignificant. Therefore, we did not find any evidence for tradeoffs between life history traits induced by symbiont infection. In fact, infected clones had higher overall fitness than symbiont-free clones under the conditions of our experiment, suggesting that symbionts do not impose costs on aphids harbouring them. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100, 237,247. [source]


    THE ROLE OF BACTERIAL SYMBIONTS IN AMINO ACID COMPOSITION OF BLACK BEAN APHIDS

    INSECT SCIENCE, Issue 3 2003
    Xue-xia Miao
    Abstract To evaluate the role of bacterial symbionts (Buchnera spp.) in the black bean aphids (Aphis craccivora Koch), the aphids were treated with the antibiotic, rifampicin, to eliminate their intracellular symbiotic bacteria. Analysis of protein and amino acid concentration in 7-day-old of aposymbiotic aphids showed that the total protein content per mg fresh weight was significantly reduced by 29%, but free amino acid titers were increased by 17%. The ratio of the essential amino acids was in general only around 20% essential amino acids in phloem sap of broad bean, whereas it was 44% and 37% in symbiotic and aposymbiotic aphids, respectively, suggesting that the composition of the free amino acids was unbalanced. For example, the essential amino acid, threonine represented 21.6% of essential amino acids in symbiotic aphids, but it was only 16.7% in aposymbiotic aphids. Likewise, two nonessential amino acids, tyrosine and serine, represented 8.9% and 5.6% of total amino acids in symbiontic aphids, respectively, but they enhanced to 21.1% and 13.6% in aposymbiotic aphids. It seems likely that the elevated free amino acid concentration in aposymbiotic aphids was caused by the limited protein anabolism as the result of the unbalanced amino acid composition. [source]