Beaked Whales (beaked + whale)

Distribution by Scientific Domains


Selected Abstracts


CHARACTERIZATION OF BEAKED WHALE (ZIPHIIDAE) AND SPERM WHALE (PHYSETER MACROCEPHALUS) SUMMER HABITAT IN SHELF-EDGE AND DEEPER WATERS OFF THE NORTHEAST U. S.

MARINE MAMMAL SCIENCE, Issue 4 2001
G. T. Waring
Abstract Sperm whales (Physeter macrocephalus) and beaked whales (Mesoplodon spp. and Ziphius cavirostris) are deep-diving cetaceans that frequent shelf-edge and Gulf Stream waters off the northeast U. S. coast. Sighting data collected during seven summer (1990, 1991, 1993, and 1995,1998) shipboard surveys were analyzed using a geographic information system to determine habitat use based on bathymetric and oceanographic features. Although sighting rates were lower for beaked whales, both taxa occupied similar habitats. Beaked whales were concentrated at the colder shelf edge, whereas sperm whales were associated with warmer off-shelf water. Mean sighting rates for both taxa were higher in canyon features, but only beaked whale sighting rates were significantly different between canyon and non-canyon habitat (Wilcoxon signed rank test P= 0.007). Within the shared habitat, the two taxa were separated at fine-scale based on oceanographic features. [source]


DOES INTENSE SHIP NOISE DISRUPT FORAGING IN DEEP-DIVING CUVIER'S BEAKED WHALES (ZIPHIUS CAVIROSTRIS)?

MARINE MAMMAL SCIENCE, Issue 3 2006
Natacha Aguilar Soto
First page of article [source]


CHARACTERIZATION OF BEAKED WHALE (ZIPHIIDAE) AND SPERM WHALE (PHYSETER MACROCEPHALUS) SUMMER HABITAT IN SHELF-EDGE AND DEEPER WATERS OFF THE NORTHEAST U. S.

MARINE MAMMAL SCIENCE, Issue 4 2001
G. T. Waring
Abstract Sperm whales (Physeter macrocephalus) and beaked whales (Mesoplodon spp. and Ziphius cavirostris) are deep-diving cetaceans that frequent shelf-edge and Gulf Stream waters off the northeast U. S. coast. Sighting data collected during seven summer (1990, 1991, 1993, and 1995,1998) shipboard surveys were analyzed using a geographic information system to determine habitat use based on bathymetric and oceanographic features. Although sighting rates were lower for beaked whales, both taxa occupied similar habitats. Beaked whales were concentrated at the colder shelf edge, whereas sperm whales were associated with warmer off-shelf water. Mean sighting rates for both taxa were higher in canyon features, but only beaked whale sighting rates were significantly different between canyon and non-canyon habitat (Wilcoxon signed rank test P= 0.007). Within the shared habitat, the two taxa were separated at fine-scale based on oceanographic features. [source]


STATUS, RELATIONSHIPS, AND DISTRIBUTION OF MESOPLODON BOWDOINI ANDREWS, 1908 (CETACEA: ZIPHIIDAE)

MARINE MAMMAL SCIENCE, Issue 3 2001
Alan N. Baker
Abstract The specific status of Mesoplodon bowdoini Andrews is reviewed and new information on its morphology, reproduction, and distribution is presented. This species of beaked whale, known only from 35 specimens, has a southern, circumpolar distribution north of the Antarctic convergence, between 32° and 54°30,S. It shares with M. bahamondi Reyes, Van Waerebeek, Cárdenas and Yáñez from the south Pacific Ocean including New Zealand (this paper) and M. carlhubbsi Moore from the north Pacific, a number of morphological features such as prominential notches in the maxillary bones in the skull. It is less similar to M. stejnegeri True from the north Pacific and M. ginkgodens Nishiwaki and Kamiya from the tropical Indo-Pacific. Mesoplodon bowdoini can be distinguished from all other species of Mesoplodon by the shape of its teeth (male and female), and differences in the morphology of its skull, especially the proportions of the rostrum, separation of the nasals, the shape of the prominential notches, and the nature of the antorbital processes. The species' distinguishing external characteristics are: a robust body up to about 4.50 m long; a low melon and short, thick beak; an elevated jawline posteriorly; and a low, blunt-tipped, triangular dorsal fin. The occurrence of fetuses of M. bowdoini in May and September, and perinatal juveniles in May and June, indicates a summer-autumn breeding season in the New Zealand region; the length at birth is estimated at about 2.20 m. [source]


Anatomic Geometry of Sound Transmission and Reception in Cuvier's Beaked Whale (Ziphius cavirostris)

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 4 2008
Ted W. Cranford
Abstract This study uses remote imaging technology to quantify, compare, and contrast the cephalic anatomy between a neonate female and a young adult male Cuvier's beaked whale. Primary results reveal details of anatomic geometry with implications for acoustic function and diving. Specifically, we describe the juxtaposition of the large pterygoid sinuses, a fibrous venous plexus, and a lipid-rich pathway that connects the acoustic environment to the bony ear complex. We surmise that the large pterygoid air sinuses are essential adaptations for maintaining acoustic isolation and auditory acuity of the ears at depth. In the adult male, an acoustic waveguide lined with pachyosteosclerotic bones is apparently part of a novel transmission pathway for outgoing biosonar signals. Substitution of dense tissue boundaries where we normally find air sacs in delphinoids appears to be a recurring theme in deep-diving beaked whales and sperm whales. The anatomic configuration of the adult male Ziphius forehead resembles an upside-down sperm whale nose and may be its functional equivalent, but the homologous relationships between forehead structures are equivocal. Anat Rec, 291:353,378, 2008. © 2008 Wiley-Liss, Inc. [source]


Lagrangian finite element treatment of transient vibration/acoustics of biosolids immersed in fluids

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 5 2008
P. Krysl
Abstract Superposition principle is used to separate the incident acoustic wave from the scattered and radiated waves in a displacement-based finite element model. An absorbing boundary condition is applied to the perturbation part of the displacement. Linear constitutive equation allows for inhomogeneous, anisotropic materials, both fluids and solids. Displacement-based finite elements are used for all materials in the computational volume. Robust performance for materials with limited compressibility is achieved using assumed-strain nodally integrated simplex elements or incompatible-mode brick elements. A centered-difference time-stepping algorithm is formulated to handle general damping accurately and efficiently. Verification problems (response of empty steel cylinder immersed in water to a step plane wave, and scattering of harmonic plane waves from an elastic sphere) are discussed for assumed-strain simplex and for voxel-based brick finite element models. A voxel-based modeling scheme for complex biological geometries is described, and two illustrative results are presented from the bioacoustics application domain: reception of sound by the human ear and simulation of biosonar in beaked whales. Copyright © 2007 John Wiley & Sons, Ltd. [source]


CHARACTERIZATION OF BEAKED WHALE (ZIPHIIDAE) AND SPERM WHALE (PHYSETER MACROCEPHALUS) SUMMER HABITAT IN SHELF-EDGE AND DEEPER WATERS OFF THE NORTHEAST U. S.

MARINE MAMMAL SCIENCE, Issue 4 2001
G. T. Waring
Abstract Sperm whales (Physeter macrocephalus) and beaked whales (Mesoplodon spp. and Ziphius cavirostris) are deep-diving cetaceans that frequent shelf-edge and Gulf Stream waters off the northeast U. S. coast. Sighting data collected during seven summer (1990, 1991, 1993, and 1995,1998) shipboard surveys were analyzed using a geographic information system to determine habitat use based on bathymetric and oceanographic features. Although sighting rates were lower for beaked whales, both taxa occupied similar habitats. Beaked whales were concentrated at the colder shelf edge, whereas sperm whales were associated with warmer off-shelf water. Mean sighting rates for both taxa were higher in canyon features, but only beaked whale sighting rates were significantly different between canyon and non-canyon habitat (Wilcoxon signed rank test P= 0.007). Within the shared habitat, the two taxa were separated at fine-scale based on oceanographic features. [source]


Anatomic Geometry of Sound Transmission and Reception in Cuvier's Beaked Whale (Ziphius cavirostris)

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 4 2008
Ted W. Cranford
Abstract This study uses remote imaging technology to quantify, compare, and contrast the cephalic anatomy between a neonate female and a young adult male Cuvier's beaked whale. Primary results reveal details of anatomic geometry with implications for acoustic function and diving. Specifically, we describe the juxtaposition of the large pterygoid sinuses, a fibrous venous plexus, and a lipid-rich pathway that connects the acoustic environment to the bony ear complex. We surmise that the large pterygoid air sinuses are essential adaptations for maintaining acoustic isolation and auditory acuity of the ears at depth. In the adult male, an acoustic waveguide lined with pachyosteosclerotic bones is apparently part of a novel transmission pathway for outgoing biosonar signals. Substitution of dense tissue boundaries where we normally find air sacs in delphinoids appears to be a recurring theme in deep-diving beaked whales and sperm whales. The anatomic configuration of the adult male Ziphius forehead resembles an upside-down sperm whale nose and may be its functional equivalent, but the homologous relationships between forehead structures are equivocal. Anat Rec, 291:353,378, 2008. © 2008 Wiley-Liss, Inc. [source]