Turbulent Kinetic Energy (turbulent + kinetic_energy)

Distribution by Scientific Domains


Selected Abstracts


Turbulent flow over a dune: Green River, Colorado

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 3 2005
Jeremy G. Venditti
Abstract Detailed echo-sounder and acoustic Doppler velocimeter measurements are used to assess the temporal and spatial structure of turbulent flow over a mobile dune in a wide, low-gradient, alluvial reach of the Green River. Based on the geometric position of the sensor over the bedforms, measurements were taken in the wake, in transitional flow at the bedform crest, and in the internal boundary layer. Spatial distributions of Reynolds shear stress, turbulent kinetic energy, turbulence intensity, and correlation coefficient are qualitatively consistent with those over fixed, two-dimensional bedforms in laboratory flows. Spectral and cospectral analysis demonstrates that energy levels in the lee of the crest (i.e. wake) are two to four times greater than over the crest itself, with minima over the stoss slope (within the developing internal boundary layer). The frequency structure in the wake is sharply defined with single, dominant peaks. Peak and total spectral and cross-spectral energies vary over the bedform in a manner consistent with wave-like perturbations that ,break' or ,roll up' into vortices that amalgamate, grow in size, and eventually diffuse as they are advected downstream. Fluid oscillations in the lee of the dune demonstrate Strouhal similarity between laboratory and field environments, and correspondence between the peak frequencies of these oscillations and the periodicity of surface boils was observed in the field. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Computational fluid dynamics modelling of boundary roughness in gravel-bed rivers: an investigation of the effects of random variability in bed elevation

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 4 2001
A.P. Nicholas
Abstract Results from a series of numerical simulations of two-dimensional open-channel flow, conducted using the computational fluid dynamics (CFD) code FLUENT, are compared with data quantifying the mean and turbulent characteristics of open-channel flow over two contrasting gravel beds. Boundary roughness effects are represented using both the conventional wall function approach and a random elevation model that simulates the effects of supra-grid-scale roughness elements (e.g. particle clusters and small bedforms). Results obtained using the random elevation model are characterized by a peak in turbulent kinetic energy located well above the bed (typically at y/h,=,0·1,0·3). This is consistent with the field data and in contrast to the results obtained using the wall function approach for which maximum turbulent kinetic energy levels occur at the bed. Use of the random elevation model to represent supra-grid-scale roughness also allows a reduction in the height of the near-bed mesh cell and therefore offers some potential to overcome problems experienced by the wall function approach in flows characterized by high relative roughness. Despite these benefits, the results of simulations conducted using the random elevation model are sensitive to the horizontal and vertical mesh resolution. Increasing the horizontal mesh resolution results in an increase in the near-bed velocity gradient and turbulent kinetic energy, effectively roughening the bed. Varying the vertical resolution of the mesh has little effect on simulated mean velocity profiles, but results in substantial changes to the shape of the turbulent kinetic energy profile. These findings have significant implications for the application of CFD within natural gravel-bed channels, particularly with regard to issues of topographic data collection, roughness parameterization and the derivation of mesh-independent solutions. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Vegetation impacts on near bank flow

ECOHYDROLOGY, Issue 4 2009
Leslie Hopkinson
Abstract Vegetation is an important component of stream restoration designs used to control streambank retreat, but vegetation effects on near bank flows need to be quantified. The goal of this research was to evaluate how three-dimensional velocity structure and turbulence characteristics vary with three vegetation treatments: tree, shrub and grass. A second order prototype stream (Tom's Creek in Blacksburg, Virginia, USA) with individual reaches dominated by each vegetation treatment was modelled in a research flume using a fixed-bed Froude-scale modelling technique. One model streambank of the prototype stream was constructed for each vegetation type and compared to a bare control (only grain roughness). Velocity profiles perpendicular to the flume model boundary were measured using a three-dimensional acoustic Doppler velocimeter. Three-dimensional velocity records, turbulent kinetic energy characteristics, and Reynolds stresses were analysed. The addition of vegetation on a sloping streambank increased the free stream streamwise velocity as compared to a bare streambank. Velocity in the downstream direction decreased in the area close to the streambank boundary for all vegetation treatments. Tree turbulence intensity and Reynolds stress distributions were similar to the bare condition due to the sparse tree placement characteristic of mature forests. The turbulence caused by the upright shrub treatment increased turbulent kinetic energy and Reynolds stresses near the streambank, particularly at the toe. The flexible grass vegetation folded and protected the streambank, reducing shear stress near the boundary. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Relationships among vertically structured in situ measures of turbulence, larval fish abundance and feeding success and copepods on Western Bank, Scotian Shelf

FISHERIES OCEANOGRAPHY, Issue 3 2002
ChristianS.
Using vertically stratified data of the abundance of silver hake (Merluccius bilinearis) larvae and concentrations of copepods collected in the field, we examine relationships among the vertical distribution of larval fish, their potential prey, feeding success and water column turbulence. Water column turbulence and associated stratification parameters were estimated from: (i) in situ measures of turbulent kinetic energy dissipation (,) provided by an EPSONDE profiler; (ii) in situ wind speed; (iii) the Richardson number (Ri); and (iv) the buoyancy frequency (N2). Small (< 5 mm total length) silver hake were more abundant in the least turbulent waters (i.e. at a minimum in the rate of dissipation of turbulent kinetic energy, , < 10,7 W kg,1; Ri > 0.25; N2 > 0.001 (rad s,1)2). Partial correlations amongst ,, N2 and small hake larvae were significant only for N2. The abundance of larger (> 5 mm total length) hake larvae was positively correlated with depth and was not associated with either , or N2. Vertical distributions of three potential prey (classified by stage) were variable. Early stage copepodids were positively correlated with N2 and negatively correlated with ,. We found no evidence of diel distribution patterns for small (< 5 mm total length) hake larvae or for any of the developmental stages of the copepods examined. Neither estimate of water column turbulence inferred from wind speed nor from Ri was meaningfully related to in situ estimates of , or to larval fish abundance. Feeding success, measured either as prey items (gut),1, average prey length, or total prey volume (gut),1, was not related to predicted encounter rates between days. However, the average prey length (gut),1 was significantly (P < 0.01) related to water column turbulence. These conflicting results suggest that the relationship between larval feeding and the environment is more complicated than assumed. We conclude that without substantial high resolution in situ examination of the relationship between the vertical distributions of turbulence, larvae and their prey, the growing acceptance in the secondary literature that turbulence has a positive and biologically meaningful effect on trophic interactions between fish and their zooplankton prey (a generalization based largely on modelling and laboratory experiments) is premature. [source]


URANS computations for an oscillatory non-isothermal triple-jet using the k,, and second moment closure turbulence models

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 9 2003
M. Nishimura
Abstract Low Reynolds number turbulence stress and heat flux equation models (LRSFM) have been developed to enhance predictive capabilities. A new method is proposed for providing the wall boundary condition for dissipation rate of turbulent kinetic energy, ,, to improve the model capability upon application of coarse meshes for practical use. The proposed method shows good agreement with accepted correlations and experimental data for flows with various Reynolds and Prandtl numbers including transitional regimes. Also, a mesh width about 5 times or larger than that used in existing models is applicable by using the present boundary condition. The present method thus enhanced computational efficiency in applying the complex turbulence model, LRSFM, to predictions of complicated flows. Unsteady Reynolds averaged Navier,Stokes (URANS) computations are conducted for an oscillatory non-isothermal quasi-planar triple-jet. Comparisons are made between an experiment and predictions with the LRSFM and the standard k,, model. A water test facility with three vertical jets, the cold in between two hot jets, simulates temperature fluctuations anticipated at the outlet of a liquid metal fast reactor core. The LRSFM shows good agreement with the experiment, with respect to mean profiles and the oscillatory motion of the flow, while the k,, model under-predicts the mixing due to the oscillation, such that a transverse mean temperature difference remains far downstream. Copyright © 2003 John Wiley & Sons, Ltd. [source]


A new second-moment closure approach for turbulent swirling confined flows

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 2 2003
Pisi Lu
Abstract An improved anisotropic model for the dissipation rate,,,of the turbulent kinetic energy (k), to be used together with a non-linear pressure-strain correlations model, is proposed. Experimental data from the open literature for two confined turbulent swirling flows are used to assess the performance of the proposed model in comparison to the standard , transport equation and to a linear approach to model the pressure-strain term that appears in the exact equations for the Reynolds-stress tensor. For the less strongly swirling flow the predictions show much more sensitivity to the ,transport equation than to the pressure-strain model. In opposition, for the more strongly swirling flow, the results show that the predictions are much sensitive to the pressure-strain model. Nevertheless, the improved ,transport equation together with the non-linear pressure strain model yield predictions in good agreement with experiments in both studied cases. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Design of a high-efficiency hydrofoil through the use of computational fluid dynamics and multiobjective optimization

AICHE JOURNAL, Issue 7 2009
N. Spogis
Abstract A computational fluid dynamics (CFD) model is proposed, based on ANSYS-CFX tools coupled to optimization models inside the commercial optimization software modeFRONTIER in order to obtain an optimal design of a high-efficiency impeller for solids suspension. The analysis of impeller shape performance was carried out using the shear-stress transport (SST) turbulence model with streamline curvature correction. This turbulence model combined the advantages of the ,,, and ,,, models, ensuring a proper relation between turbulent stress and turbulent kinetic energy, allowing an accurate and robust prediction of the impeller blade flow separation. The multiple frames of reference and the frozen rotor frame change models were used for the rotor/stator interaction inside the mixing vessel. The optimization procedure used seven design variables, two nonlinear constraints and two objective functions. The objective functions chosen (among many other possible options) to evaluate the impeller performance were the maximum solid distribution throughout the vessel (homogeneous suspension) reflected by a low variance between local solid concentration and average solid concentration inside the vessel and the higher pumping effectiveness, which was defined as the quotient of the flow and power numbers. The first objective function searches for impeller configurations able to provide good solid suspension, since it aims to achieve homogeneous suspension. The second objective function aims to reduce power consumption for a high-pumping capacity of the impeller. These criteria were considered enough to characterize the optimized impeller. Results indicated that the optimized impeller presented an increase of the pumping impeller capacity and homogeneous solid suspension with low-power consumption, especially when compared with the PBT 45° impeller. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]


CFD modeling of heat transfer in turbulent pipe flows

AICHE JOURNAL, Issue 9 2000
S. S. Thakre
Twelve versions of low Reynolds number k-, and two low Reynolds number Reynolds stress turbulence models for heat transfer were analyzed comparatively. Predictions of the mean axial temperature, the radial and axial turbulent heat fluxes, and the effect of Prandtl number on Nusselt number were compared with the experimental data. The model by Lai and So from the k-, group and Lai and So from the Reynolds stress group had the best overall predictive ability for heat transfer in turbulent pipe flow. The Lai and So model was attributed to its success in the predictions of flow parameters such as mean axial velocity, turbulent kinetic energy, eddy diffusivity, and the overall energy dissipation rate. The k-, models performed relatively better than the Reynolds stress models for predicting the mean axial temperature and the Nusselt number. This qualitative and quantitative study found the need for more sophisticated near-wall experimental measurements and the accuracy of the dissipation (of turbulent energy) and the pressure-scrambling models. [source]


The Noise Prediction Model SATIN

PROCEEDINGS IN APPLIED MATHEMATICS & MECHANICS, Issue 1 2003
J. Ostertag Dipl.-Ing.
This paper presents the noise prediction model SATIN (Statistical Approach to Turbulence Induced Noise) which is based on Lighthill's acoustic analogy. It allows to predict both, the far-field noise radiation as well as near-field wall-pressure fluctuations. Far-field noise radiation may result from the scattering of wall-pressure fluctuations at geometrical discontinuities and is therefore important for many practical problems. Within this paper, we focus on the calculation of far-field noise radiation. The required input values of SATIN are local properties of turbulence, namely the turbulent kinetic energy and the integral length scale which can be obtained by steady solutions of the Reynolds-averaged Navier-Stokes equations with a two equation turbulence model. It is assumed that the turbulence is axisymmetric and homogenous, which is taken into account by introducing two anisotropy parameters. The validation of SATIN is done for trailing-edge noise originating from a thin flat plate using measurements of a phased array. As expected, the anisotropic formulation of SATIN improves the prediction quality considerably compared to isotropic turbulence. [source]


Important Factors in Bubble Coalescence Modeling in Stirred Tank Reactors

THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 3-4 2003
Rahman Sudiyo
Abstract Bubble coalescence has been studied in a 2.6 L stirred tank. Instantaneous velocity fields were measured using PIV and corresponding turbulent kinetic energy, dissipation rate, various length and timescales were estimated. All of these data, combined with data of local gas hold-up, bubble size and coalescence rate obtained with shadowgraph were used to assess bubble coalescence at different positions. Results show that bubble coalescence takes place mostly near the tank wall, especially on the leeward side of baffles. The most important factors affecting coalescence are gas hold-up, fluctuation of liquid velocity, different rise velocities of bubbles, and trapping of bubbles in stationary and turbulent eddies. On a étudié la coalescence des bulles dans un réservoir agité de 2,6 L. Les champs de vitesse instantanée ont été mesurés par vélocimétrie à imagerie de particules (PIV), et l'énergie cinétique turbulente correspondante, la vitesse de dissipation et diverses échelles de longueur et de temps ont été estimés. Toutes ces données, combinées à des données de rétention de gaz locale, de taille des bulles et de vitesse de coalescence obtenues avec le projecteur de profils, ont permis d'évaluer la coalescence des bulles à différentes positions. Les résultats montrent que la coalescence des bulles se produit principalement près de la paroi du réservoir, spécialement sur la face aval des chicanes. Les principaux facteurs qui influent la coalescence sont la rétention de gaz, la fluctuation de la vitesse de liquide, les différentes vitesses d'ascension des bulles et le piégeage des bulles dans des tourbillons stationnaires et turbulents. [source]


A low reynolds number k-, modelling of turbulent pipe flow: Flow pattern and energy balance

THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 2 2001
Shirish S. Thakre
Abstract The present paper addresses a comparative analysis of twelve different versions of low Reynolds number k -, turbulence models. The predictive capability of the models have been tested on the basis of the flow patterns and energy balance. Numerical simulations were performed at the Reynolds numbers of 7400, 22 000 and 500 000. The predicted mean axial velocity and turbulent kinetic energy were compared with the experimental data of Durst et al. (1995) and Schildknecht et al.(1979) for the Reynolds number of 7400 and 22000 respectively. The overall energy balance was established at three Reynolds numbers of 7400, 22 000 and 500000. A comparison of all the models has been predicted. On décrit dans cet article une analyse comparative de douze versions différentes de modèles de turbulence à faibles nombres de Reynolds k -,. La capacité de prédiction de ces modèles a été testée d'après les profils d'écoulement et le bilan énergétique. Des simulations numériques ont été réalisées à des nombres de Reynolds de 7400, 22 000 et 500 000. La vitesse axiale et l'énergie cinétique turbulente moyennes prédites ont été comparées aux données expérimentales de Durst et al. (1995) et Schildknecht et al. (1979) pour les nombres de Reynolds de 7400 et 22 000, respectivement. Le bilan énergétique global a été établi pour les trois nombres de Reynolds. Une comparaison de tous les modèles a été effectuée. [source]


An improved PDF cloud scheme for climate simulations

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 651 2010
Akira Kuwano-Yoshida
Abstract An efficient grid-scale cloud scheme for climate simulation is implemented in the atmospheric general circulation model for the Earth Simulator (AFES). The new cloud scheme uses statistical partial condensation using joint-Gaussian probability distribution functions (PDFs) of the liquid water potential temperature and total water content, with standard deviations estimated by the moist Mellor,Yamada level-2 turbulence scheme. It also adopts improved closure parameters based on large-eddy simulations and a revised mixing length that varies with the stability and turbulent kinetic energy. These changes not only enable better representation of low-level boundary layer clouds, but also improve the atmospheric boundary layer structure. Sensitivity experiments for vertical resolution suggest that O(100,200 m) intervals are adequate to represent well-mixed boundary layers with the new scheme. The new scheme performs well at relatively low horizontal resolution (about 150 km), although inversion layers near the coast become more intense at a higher horizontal resolution (about 50 km). Copyright © 2010 Royal Meteorological Society [source]


The influence of background wind direction on the roadside turbulent velocity field within a complex urban street

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 635 2008
R. J. Smalley
Abstract The turbulent velocity field within a complex urban street in the city of York, United Kingdom was measured over a one-month period, with data coverage over a wide range of background wind directions, ,ref (where ,ref = 0° is relative to the street axis, and angles increasing clockwise). Within the street, a persistent mean-flow cross-street circulation exists for 15° ,,ref < 165° in addition to possible flow convergence for 240° ,,ref < 300° . The magnitude of the in-street normalised turbulent kinetic energy (TKE) is dependent on the type of predominant in-street mean-flow structures. During conditions that correspond to mean-flow cross-street circulation, the TKE is approximately twice the magnitude on the windward side compared with the leeward side. For nearly all wind directions, and on both sides of the street, the TKE is approximately constant with height for 0.4 < z/H < 0.8. There is evidence that the in-street TKE increases with background TKE when other meteorological influences are relatively constant. For background wind directions free from mean flow convergence, the least variability in the sector-averaged turbulence data occurs when the TKE is normalised by the in-street mean wind speed, rather than the background wind speed. The two-point cross-correlation of the vertical-velocity component fluctuations on the windward side is at least 0.6 between the mid and upper anemometers. The two-point cross-correlation between cross-street (same height) vertical-velocity component fluctuations is negative and non-negligible during mean-flow circulation, which indicates possible cross-street coherence in the turbulent velocity field. The turbulent Reynolds stress anisotropy tensor, which provides an indication of the level of TKE redistribution between the components, and the overall level of turbulence anisotropy, is discussed with reference to the mean-flow structures within the street. Copyright © 2008 Royal Meteorological Society [source]


Turbulence energetics in stably stratified geophysical flows: Strong and weak mixing regimes

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 633 2008
S. S. Zilitinkevich
Abstract Traditionally, turbulence energetics is characterised by turbulent kinetic energy (TKE) and modelled using solely the TKE budget equation. In stable stratification, TKE is generated by the velocity shear and expended through viscous dissipation and work against buoyancy forces. The effect of stratification is characterised by the ratio of the buoyancy gradient to squared shear, called the Richardson number, Ri. It is widely believed that at Ri exceeding a critical value, Ric, local shear cannot maintain turbulence, and the flow becomes laminar. We revise this concept by extending the energy analysis to turbulent potential and total energies (TPE, and TTE = TKE + TPE), consider their budget equations, and conclude that TTE is a conservative parameter maintained by shear in any stratification. Hence there is no ,energetics Ric', in contrast to the hydrodynamic-instability threshold, Ric,instability, whose typical values vary from 0.25 to 1. We demonstrate that this interval, 0.25 < Ri < 1, separates two different turbulent regimes: strong mixing and weak mixing rather than the turbulent and the laminar regimes, as the classical concept states. This explains persistent occurrence of turbulence in the free atmosphere and deep ocean at Ri , 1, clarifies the principal difference between turbulent boundary layers and free flows, and provides the basis for improving operational turbulence closure models. Copyright © 2008 Royal Meteorological Society [source]


Precipitating convection in cold air: Virtual potential temperature structure

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 622 2007
A. L. M. Grant
Abstract Simulations of precipitating convection are used to illustrate the importance of the turbulent kinetic energy (TKE) budget in determining the virtual potential-temperature structure of the convecting atmosphere. Two sets of simulations are presented: in one the surface temperature was increased to simulate cold air flowing over a warmer surface and in the second a cooling profile, representing cold-air advection, was imposed. It is shown that the terms in the TKE budgets for both sets of simulations scale in the same way, but that the non-dimensional profiles are different. It is suggested that this is associated with the effects of sublimation of ice. It is shown that the magnitudes of the transport and precipitation terms in the virtual potential temperature budget are determined by the scaling of the TKE budget. Some implications of these results for parametrizations of moist convection are discussed. Copyright © 2007 Royal Meteorological Society [source]


The cumulus-capped boundary layer.

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 618 2006
II: Interface fluxes
Abstract This paper considers the relationship between the mean temperature and humidity profiles and the fluxes of heat and moisture at cloud base and the base of the inversion in the cumulus-capped boundary layer. The relationships derived are based on an approximate form of the scalar-flux budget and the scaling properties of the turbulent kinetic energy (TKE) budget. The scalar-flux budget gives a relationship between the change in the virtual potential temperature across either the cloud base transition zone or the inversion and the flux at the base of the layer. The scaling properties of the TKE budget lead to a relationship between the heat and moisture fluxes and the mean subsaturation through the liquid-water flux. The ,jump relation' for the virtual potential temperature at cloud base shows the close connection between the cumulus mass flux in the cumulus-capped boundary layer and the entrainment velocity in the dry-convective boundary layer. Gravity waves are shown to be an important feature of the inversion. © Crown copyright. 2006 [source]


Boundary-layer variations due to orographic-wave breaking in the presence of rotation

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 603 2004
B. Grisogono
Abstract A mesoscale numerical model is used to study the atmospheric boundary-layer (ABL) response to nonlinear orographic forcing with Coriolis effect, f, over a mountain with length (the cross-wind component) comparable to the Rossby radius of deformation, LR. The orographic-wave breaking occurring for Froude number Fr<1, affected by f>0, intensifies on the northern flank for westerly flows, as also found in other recent studies. A cumulative effect occurs as the Coriolis force lifts the northern ABL top and generates a stronger low-level jet (LLJ) than on the southern side. A differential layering also appears, since the specific humidity is higher in the lower southern ABL than in the related northern ABL, and vice versa. By contrast, there are higher values of the turbulent kinetic energy and humidity in the upper northern ABL. The breaking of flow symmetry around the orography due to f changes both the vertical vorticity and horizontal divergence field, (,, D), it modulates eddies and turbulence leading to the differential layering of the ABL. The stronger northern LLJ and its weaker southern counterpart, both meandering, together with the asymmetric wave breaking, induce strong lee-side fluctuations of the (,, D) field in the presence of f. The enhanced (,, D) production due to wave breaking over the distance , LR, the primary atmosphere,orography resonance occurs mainly in the vertical, while the ,f -enhancement' occurs in the horizontal plane. In this way, the initial mesoscale forcing may extend its effects over the synoptic scale. Copyright © 2004 Royal Meteorological Society [source]