Home About us Contact | |||
Turbulence Intensity (turbulence + intensity)
Selected AbstractsAn experimental study on the ripple,dune transitionEARTH SURFACE PROCESSES AND LANDFORMS, Issue 6 2001André Robert Abstract Flume experiments were conducted on different bed stages across the ripple,dune transition. As flow velocity increases, an initially flat bed surface (made of fairly uniform sandy material) is gradually transformed into a two-dimensional rippled bed. With further increase in velocity, two-dimensional ripples are replaced by irregular, linguoid ripples. As the average velocity necessary for the ripple,dune transition to occur is imposed on the bed surface, these non-equilibrium linguoid ripples are further transformed into larger, two-dimensional dunes. For each of these stages across the transition, a concrete mould of the bed was created and the flow structure above each fixed bed surface investigated. An acoustic Doppler velocimeter was used to study the flow characteristics above each bed surface. Detailed profiles were used along a transect located in the middle of the channel. Results are presented in the form of spatially averaged profiles of various flow characteristics and of contour maps of flow fields (section view). They clearly illustrate some important distinctions in the flow structure above the different bedform types associated with different stages during the transition. Turbulence intensity and Reynolds stresses gradually increase throughout the transition. Two-dimensional ripples present a fairly uniform spatial distribution of turbulent flow characteristics above the bed. Linguoid ripples induce three-dimensional turbulence structure at greater heights above the bed surface and turbulence intensity tends to increase steadily with height above bed surface in the wake region. A very significant increase in turbulence intensity and momentum exchange occurs during the transition from linguoid ripples to dunes. The turbulent flow field properties above dunes are highly dependent on the position along and above the bed surface and these fields present a very high degree of spatial variability (when compared with the rippled beds). Further investigations under natural conditions emphasizing sediment transport mechanisms and rates during the transition should represent the next step of analysis, together with an emphasis on quadrant analysis. Copyright © 2001 John Wiley & Sons, Ltd. [source] The local isotropy hypothesis and the turbulent kinetic energy dissipation rate in the atmospheric surface layerTHE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 603 2004M. Chamecki Abstract We test the applicability of the local isotropy hypothesis to surface-layer turbulent flow; turbulent velocities measured with a three-dimensional sonic anemometer are used for this purpose, and the predictions of local isotropy for the spectra, second- and third-order structure functions are assessed against measured data. Also investigated are scale interactions via the correlation between velocities and velocity increments, and the ability of isotropic spectral models to reproduce measured spectra. In general, second-order structure functions display a narrower inertial range than the corresponding spectra; both the known effects of path-averaging and the predictions of the spectral models show that the sonic anemometer is unable to resolve the whole inertial range, even at a measurement frequency of 60 Hz. We confirm previous results that unstable runs tend to be more isotropic, but find that, for third-order statistics, isotropy does not hold well for the data analysed. Turbulence intensity, and not atmospheric stability, plays a determining role on the correlation coefficient between velocities and velocity increments. The observed anisotropic behaviour has important implications for the calculation of the turbulent kinetic energy dissipation rate from Kolmogorov's four-fifths law, whose estimates are consistently smaller than those from the inertial range of the spectrum or the structure functions. Copyright © 2004 Royal Meteorological Society [source] The linkage between velocity patterns and sediment entrainment in a forced-pool and riffle unitEARTH SURFACE PROCESSES AND LANDFORMS, Issue 2 2009D. M. Thompson Abstract A field-based project was initiated in order to characterize velocities and sediment entrainment in a forced-pool and riffle sequence. Three-dimensional velocities and turbulence intensities were measured with an acoustic Doppler velocimeter at 222 different points at three similar flows that averaged approximately 4·35 m3 s,1 within a large pool,riffle unit on North Saint Vrain Creek, Colorado. Sediment-sorting patterns were observed with the introduction of 500 tracer particles painted according to initial seeding location. Tracer particles moved sporadically during a 113 day period in response to the annual snowmelt peak flow, which reached a maximum level of 14·8 m3 s,1. Velocity data indicate high instantaneous velocities and turbulence levels in the centre of pools. Patterns of sediment deposition support the notion that stream competence is higher in the pool than the downstream riffle. Flow convergence around a large channel constriction appears to play a major role in multiple processes that include helical flow development and sediment routing, and backwater development with low velocities and turbulence levels above the constriction that may locally limit sediment supply. Jet flow, flow separation, vortex scour and turbulence generation enhance scour in the centre of pools. Ultimately, multiple processes appear to play some role in maintenance of this forced pool and the associated riffle. Copyright © 2008 John Wiley & Sons, Ltd. [source] The influence of pool length on local turbulence production and energy slope: a flume experimentEARTH SURFACE PROCESSES AND LANDFORMS, Issue 11 2004Douglas M. Thompson Abstract The in,uence of pool length on the strength of turbulence generated by vortex shedding was investigated in a 6 m long recirculating ,ume. The experiment utilized a 38% constriction of ,ow and an average channel-bed slope of 0·007. The base geometry for the intermediate-length pool experiment originated from a highly simpli,ed, 0·10 scale model of a forced pool from North Saint Vrain Creek, Colorado. Discharge in the ,ume was 31·6 l/s, which corresponds to a discharge in the prototype channel of 10 m3/s. Three shorter and four longer pool lengths also were created with a ,xed bed to determine changes in turbulence intensities and energy slope with pool elongation. Three-dimensional velocities were measured with an acoustic Doppler velocimeter at 31,40 different 0·6-depth and near-bed locations downstream of the rectangular constriction. The average velocity and root mean square (RMS) of the absolute magnitude of velocity at both depths are signi,cantly related to the distance from the constriction in most pool locations downstream of the constriction. In many locations, pool elongation results in a non-linear change in turbulence intensities and average velocity. Based on the overall ,ow pattern, the strongest turbulence occurs in the center of the pool along the shear zone between the jet and recirculating eddy. The lateral location of this shear zone is sensitive to changes in pool length. Energy slope also was sensitive to pool length due to a combination of greater length of the pool and greater head loss with shorter pools. The results indicate some form of hydraulic optimization is possible with pools adjusting their length to adjust the location and strength of turbulent intensities in the center of pools, and lower their rate of energy dissipation. Copyright © 2004 John Wiley & Sons, Ltd. [source] Large eddy simulation of turbulent channel flow using an algebraic modelINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 5 2005S. Bhushan Abstract In this paper an algebraic model from the constitutive equations of the subgrid stresses has been developed. This model has an additional term in comparison with the mixed model, which represents the backscatter of energy explicitly. The proposed model thus provides independent modelling of the different energy transfer mechanisms, thereby capturing the effect of subgrid scales more accurately. The model is also found to depict the flow anisotropy better than the linear and mixed models. The energy transfer capability of the model is analysed for the isotropic decay and the forced isotropic turbulence. The turbulent plane channel flow simulation is performed over three Reynolds numbers, Re,=180, 395 and 590, and the results are compared with that of the dynamic model, Smagorinsky model, and the DNS data. Both the algebraic and dynamic models are in good agreement with the DNS data for the mean flow quantities. However, the algebraic model is found to be more accurate for the turbulence intensities and the higher-order statistics. The capability of the algebraic model to represent backscatter is also demonstrated. Copyright © 2005 John Wiley & Sons, Ltd. [source] Computation of an unsteady complex geometry flow using novel non-linear turbulence modelsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 9 2003Paul G. Tucker Abstract Non-linear zonal turbulence models are applied to an unsteady complex geometry flow. These are generally found to marginally improve predicted turbulence intensities. However, relative to linear models, convergence is mostly difficult to achieve. Clipping of some non-linear Reynolds stress components is required along with velocity field smoothing or alternative measures. Smoothing is naturally achieved through multilevel convergence restriction operators. As a result of convergence difficulties, generally, non-linear model computational costs detract from accuracy gains. For standard Reynolds stress model results, again computational costs are prohibitive. Also, mean velocity profile data accuracies are found worse than for a simple mixing length model. Of the non-linear models considered, the explicit algebraic stress showed greatest promise with respect to accuracy and stability. However, even this shows around a 30% error in total (the sum of turbulence and unsteadiness) intensity. In strong contradiction to measurements the non-linear and Reynolds models predict quasi-steady flows. This is probably a key reason for the total intensity under-predictions. Use of LES in a non-linear model context might help remedy this modelling aspect. Copyright © 2003 John Wiley & Sons, Ltd. [source] Turbulent flow over a dune: Green River, ColoradoEARTH SURFACE PROCESSES AND LANDFORMS, Issue 3 2005Jeremy G. Venditti Abstract Detailed echo-sounder and acoustic Doppler velocimeter measurements are used to assess the temporal and spatial structure of turbulent flow over a mobile dune in a wide, low-gradient, alluvial reach of the Green River. Based on the geometric position of the sensor over the bedforms, measurements were taken in the wake, in transitional flow at the bedform crest, and in the internal boundary layer. Spatial distributions of Reynolds shear stress, turbulent kinetic energy, turbulence intensity, and correlation coefficient are qualitatively consistent with those over fixed, two-dimensional bedforms in laboratory flows. Spectral and cospectral analysis demonstrates that energy levels in the lee of the crest (i.e. wake) are two to four times greater than over the crest itself, with minima over the stoss slope (within the developing internal boundary layer). The frequency structure in the wake is sharply defined with single, dominant peaks. Peak and total spectral and cross-spectral energies vary over the bedform in a manner consistent with wave-like perturbations that ,break' or ,roll up' into vortices that amalgamate, grow in size, and eventually diffuse as they are advected downstream. Fluid oscillations in the lee of the dune demonstrate Strouhal similarity between laboratory and field environments, and correspondence between the peak frequencies of these oscillations and the periodicity of surface boils was observed in the field. Copyright © 2005 John Wiley & Sons, Ltd. [source] An experimental study on the ripple,dune transitionEARTH SURFACE PROCESSES AND LANDFORMS, Issue 6 2001André Robert Abstract Flume experiments were conducted on different bed stages across the ripple,dune transition. As flow velocity increases, an initially flat bed surface (made of fairly uniform sandy material) is gradually transformed into a two-dimensional rippled bed. With further increase in velocity, two-dimensional ripples are replaced by irregular, linguoid ripples. As the average velocity necessary for the ripple,dune transition to occur is imposed on the bed surface, these non-equilibrium linguoid ripples are further transformed into larger, two-dimensional dunes. For each of these stages across the transition, a concrete mould of the bed was created and the flow structure above each fixed bed surface investigated. An acoustic Doppler velocimeter was used to study the flow characteristics above each bed surface. Detailed profiles were used along a transect located in the middle of the channel. Results are presented in the form of spatially averaged profiles of various flow characteristics and of contour maps of flow fields (section view). They clearly illustrate some important distinctions in the flow structure above the different bedform types associated with different stages during the transition. Turbulence intensity and Reynolds stresses gradually increase throughout the transition. Two-dimensional ripples present a fairly uniform spatial distribution of turbulent flow characteristics above the bed. Linguoid ripples induce three-dimensional turbulence structure at greater heights above the bed surface and turbulence intensity tends to increase steadily with height above bed surface in the wake region. A very significant increase in turbulence intensity and momentum exchange occurs during the transition from linguoid ripples to dunes. The turbulent flow field properties above dunes are highly dependent on the position along and above the bed surface and these fields present a very high degree of spatial variability (when compared with the rippled beds). Further investigations under natural conditions emphasizing sediment transport mechanisms and rates during the transition should represent the next step of analysis, together with an emphasis on quadrant analysis. Copyright © 2001 John Wiley & Sons, Ltd. [source] Vegetation impacts on near bank flowECOHYDROLOGY, Issue 4 2009Leslie Hopkinson Abstract Vegetation is an important component of stream restoration designs used to control streambank retreat, but vegetation effects on near bank flows need to be quantified. The goal of this research was to evaluate how three-dimensional velocity structure and turbulence characteristics vary with three vegetation treatments: tree, shrub and grass. A second order prototype stream (Tom's Creek in Blacksburg, Virginia, USA) with individual reaches dominated by each vegetation treatment was modelled in a research flume using a fixed-bed Froude-scale modelling technique. One model streambank of the prototype stream was constructed for each vegetation type and compared to a bare control (only grain roughness). Velocity profiles perpendicular to the flume model boundary were measured using a three-dimensional acoustic Doppler velocimeter. Three-dimensional velocity records, turbulent kinetic energy characteristics, and Reynolds stresses were analysed. The addition of vegetation on a sloping streambank increased the free stream streamwise velocity as compared to a bare streambank. Velocity in the downstream direction decreased in the area close to the streambank boundary for all vegetation treatments. Tree turbulence intensity and Reynolds stress distributions were similar to the bare condition due to the sparse tree placement characteristic of mature forests. The turbulence caused by the upright shrub treatment increased turbulent kinetic energy and Reynolds stresses near the streambank, particularly at the toe. The flexible grass vegetation folded and protected the streambank, reducing shear stress near the boundary. Copyright © 2009 John Wiley & Sons, Ltd. [source] Interaction between wind-induced seiches and convective cooling governs algal distribution in a canyon-shaped reservoirFRESHWATER BIOLOGY, Issue 7 2007RAFAEL MARCÉ Summary 1. Wind is considered the dominant factor controlling phytoplankton distribution in lentic environments. In canyon-shaped reservoirs, wind tends to blow along the main axis generating internal seiches and advective water movements that jointly with biological features of algae can produce a heterogeneous phytoplankton distribution. Turbulence generated by wind stress and convection will also affect the vertical distribution of algae, depending on their sinking properties. 2. We investigated the vertical and horizontal distribution of phytoplankton during the stratification period in Sau Reservoir (NE Spain). Sites along the main reservoir axis were sampled every 4 h for 3 days, and profiles of chlorophyll- a and temperature were made using a fluorescent FluoroProbe, which can discriminate among the main algal groups. Convective and wind shear velocity scales, and energy dissipation were calculated from meteorological data, and simulation experiments were performed to describe non-measured processes, like vertical advection and sinking velocity of phytoplankton. 3. Wind direction changed from day to night, producing a diel thermocline oscillation and an internal seiche. Energy dissipation was moderate during the night, and mainly attributed to convective cooling. During the day the energy dissipation was entirely attributed to wind shear, but values indicated low turbulence intensity. 4. The epilimnetic algal community was mainly composed of diatoms and chlorophytes. Chlorophytes showed a homogeneous distribution on the horizontal and vertical planes. Diatom horizontal pattern was also homogeneous, because the horizontal advective velocities generated by wind forcing were not high enough to develop phytoplankton gradients along the reservoir. 5. Diatom vertical distribution was heterogeneous in space and time. Different processes dominated in different regions of the reservoir, due to the interaction between seiching and the daily cycle of convective-mediated turbulence. As the meteorological forcing followed a clear daily pattern, we found very different diatom sedimentation dynamics between day and night. Remarkably, these dynamics were asynchronous in the extremes of the seiche, implying that under the same meteorological forcing a diatom population can show contrasting sedimentation dynamics at small spatial scales (approximately 103 m). This finding should be taken into account when interpreting paleolimnological records from different locations in a lake. 6. Vertical distribution of non-motile algae is a complex process including turbulence, vertical and horizontal advection, variations in the depth of the mixing layer and the intrinsic sinking properties of the organisms. Thus, simplistic interpretations considering only one of these factors should be regarded with caution. The results of this work also suggest that diatoms can persist in stratified water because of a synergistic effect between seiching and convective turbulence. [source] Suspended sediment concentration and the ripple,dune transitionHYDROLOGICAL PROCESSES, Issue 17 2004Robert J. Schindler Abstract Flume experiments were conducted in order to monitor changes in flow turbulence intensity and suspended sediment concentration at seven stages across the ripple,dune transition and at three different positions above the bed surface. Three-dimensional velocity measurements were obtained using an acoustic Doppler velocimeter (ADV). Suspended sediment concentration (SSC) was monitored indirectly using ADV signal amplitude. Although limited to time-averaged parameters, the analysis reveals that SSC varies significantly with stage across the transition and with sampling height. The statistical analysis also reveals an apparent uniformity of suspended sediment concentration with height above the bed in the lower half of the flow depth at the critical stage in the transition from ripples to dunes. This is also the stage at which turbulence intensity is maximized. Statistically significant correlations were also observed between suspended sediment concentrations and root-mean-square values of vertical velocity fluctuations. These correlations reflect the various levels of shear-layer activity and the distinct turbulent flow regions across the transition. Conversely, time-averaged values of Reynolds shear stress exhibit a very weak relationship with suspended sediment concentrations. Copyright © 2004 John Wiley & Sons, Ltd. [source] Large eddy simulation of turbulent concentric annular channel flowsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 12 2004Nan-Sheng Liu Abstract Fully developed turbulent concentric annular channel flow has been investigated numerically by use of large eddy simulation (LES) technique coupled with a localized one-equation dynamic subgrid-scale (SGS) model. The objective of this study is to deal with the behaviour of turbulent flow near the inner and outer walls of the concentric annular channel and to examine the effectiveness of LES technique for predicting the turbulent flow influenced by the transverse curvature effect. The computations are performed for the Reynolds number Re,=180, 395 and 640, based on an averaged friction velocity and the annular channel width with the inner and outer cylinder radius being Ri=1 and Ro=2. To validate the present approach, calculated results for turbulent pipe flow and concentric annular channel flow are compared with available experimental data and direct numerical simulation results, which confirms that the present approach can be used to study turbulent concentric annular channel flow satisfactorily. To elucidate turbulence characteristics in the concentric annular channel, some typical quantities, including the resolved velocity, turbulence intensity, turbulent eddy viscosity, SGS kinetic energy, SGS dissipation rate, Reynolds stress budgets, and turbulence structures based on the velocity fluctuations, are analysed. Copyright © 2004 John Wiley & Sons, Ltd. [source] Numerical simulation of turbulent flow through series stenosesINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 7 2003T. S. Lee Abstract The flow fields in the neighbourhoods of series vascular stenoses are studied numerically for the Reynolds numbers from 100 to 4000, diameter constriction ratios of 0.2,0.6 and spacing ratios of 1, 2, 3, 4 and ,. In this study, it has been further verified that in the laminar flow region, the numerical predictions by k,, turbulence model matched those by the laminar-flow modelling very well. This suggests that the k,, turbulence model is capable of the prediction of the laminar flow as well as the prediction of the turbulent stenotic flow with good accuracy. The extent of the spreading of the recirculation region from the first stenosis and its effects on the flow field downstream of the second stenosis depend on the stenosis spacing ratio, constriction ratio and the Reynolds number. For c1 = 0.5 with c2 , c1, the peak value of wall vorticity generated by the second stenosis is always less than that generated by the first stenosis. However, the maximum centreline velocity and turbulence intensity at the second stenosis are higher than those at the first stenosis. In contrast, for c1 = 0.5 with c2 = 0.6, the maximum values at the second stenosis are much higher than those at the first stenosis whether for centreline velocity and turbulence intensity or for wall vorticity. The peak values of the wall vorticity and the centreline disturbance intensity both grow up with the Reynolds number increasing. The present study shows that the more stenoses can result in a lower critical Reynolds number that means an earlier occurrence of turbulence for the stenotic flows. Copyright © 2003 John Wiley & Sons, Ltd. [source] Study on factors influencing stagnation point offset of turbulent opposed jetsAICHE JOURNAL, Issue 10 2010Wei-Feng Li Abstract Turbulent opposed jets were experimentally studied by the hot-wire anemometer measurement, the smoke-wire flow visualization, and the CFD simulation at L = 1,20D (where L is the nozzle separation and D is the nozzle diameter) and Re > 4500. The instability pattern of turbulent opposed jets was identified by investigating the smoke-wire photos recorded by a high-speed camera. The factors affecting stagnation point offset, such as the bulk velocity, the velocity profile, and the turbulence intensity at the nozzle exits were investigated. Results show that the stagnation point offset is the main instability regime of turbulent opposed jets. Uniform exit velocity profile and increasing exit turbulence intensity will decrease the stagnation point offset of turbulent opposed jets. © 2010 American Institute of Chemical Engineers AIChE J, 2010 [source] Demarcation of a new circulating turbulent fluidization regimeAICHE JOURNAL, Issue 3 2009Xiaobo Qi Abstract Transient flow behaviors in a novel circulating-turbulent fluidized bed (C-TFB) were investigated by a multifunctional optical fiber probe, that is capable of simultaneously measuring instantaneous local solids-volume concentration, velocity and flux in gas-solid two-phase suspensions. Microflow behavior distinctions between the gas-solid suspensions in a turbulent fluidized bed (TFB), conventional circulating fluidized bed (CFB), the bottom region of high-density circulating fluidized bed (HDCFB), and the newly designed C-TFB were also intensively studied. The experimental results show that particle-particle interactions (collisions) dominate the motion of particles in the C-TFB and TFB, totally different from the interaction mechanism between the gas and solid phases in the conventional CFB and the HDCFB, where the movements of particles are mainly controlled by the gas-particle interactions (drag forces). In addition, turbulence intensity and frequency in the C-TFB are significantly greater than those in the TFB at the same superficial gas velocity. As a result, the circulating-turbulent fluidization is identified as a new flow regime, independent of turbulent fluidization, fast fluidization and dense suspension upflow. The gas-solid flow in the C-TFB has its inherent hydrodynamic characteristics, different from those in TFB, CFB and HDCFB reactors. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] Numerical Investigation of Turbulent Flow around a Rotating Stepped Cylinder for Corrosion StudyTHE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 1 2003Kyung-Soo Yang Abstract Direct numerical simulation has been carried out for turbulent flow set up by a rotating cylinder with two backward-facing steps axisymmetrically mounted in the circumferential direction. This flow geometry creates a qualitatively similar flow pattern as observed near a sudden pipe expansion or a plane backward-facing step, characterized by flow separation and reattachment. A region of intense turbulence intensity and high wall-shear-stress fluctuations is formed in the recirculating region downstream of the step, where high mass-transfer capacity was also experimentally observed. Since corrosion is frequently mass-transfer controlled, our findings put forward this apparatus as a useful tool for future corrosion research. On a effectué une simulation numérique directe de l'écoulement turbulent créé par un cylindre rotatif ayant deux contractions axisymétriques dans la direction circonférentielle. Cette géométrie crée un profil d'écoulement qualitativement similaire à celui qu'on observe près d'une expansion de conduite soudaine ou d'une contraction planaire, caractérisés par la séparation et le ré-attachement de l'écoulement. Une région d'intense turbulence et de fortes fluctuations de contraintes de cisaillement pariétal se forment dans la région en recirculation en aval de la contraction, où une grande capacité de transfert de matière a également été observée expérimentalement. Étant donné que la corrosion dépend souvent du transfert de matière, nos résultats font la promotion de cet appareillage en tant qu'outil utile pour la recherche future sur la corrosion. [source] A computational study on the characteristics of airflow in bilateral abductor vocal fold immobility,THE LARYNGOSCOPE, Issue 9 2010M. Kür, at Gökcan MD Abstract Objectives/Hypothesis: To evaluate airway sufficiency and airflow dynamics in a group of patients who underwent a posterior transverse laser cordotomy (PTLC) procedure. Study Design: Mixed methods research, university hospital setting. Methods: Sixteen patients who underwent a PTLC procedure volunteered to be involved in this study. Dyspnea levels, voice, and glottic opening in indirect laryngoscopy were evaluated subjectively. The airway was evaluated objectively by pulmonary function tests, and glottic areas were measured from axial computed tomography (CT) images. The control group consisted of 63 subjects from the tomography archive. For computational fluid dynamics (CFD) analyses, two subjects from the study group were chosen on the basis of obstruction level, and a normal female subject was selected from the control group. Cartesian coordinates for airway boundaries were determined from axial CT images, and a three-dimensional computational model of the larynx was constructed. Flow simulations were performed with two different flow conditions during inspiration. Comparison of velocity, static pressure, turbulence intensity, and wall shear stress distribution values were made between selected cases and control. Results: Pulmonary data varied widely and did not correlate with the size of the glottic area or dyspnea level. CFD analyses revealed that in addition to obstruction at the glottic level, aerodynamic properties of the larynx are altered due to loss in muscular tonus. Also, the contour of the glottic opening was found to be very important in determining the character of airflow as laminar or turbulent. Conclusions: Patients have considerable differences in their flow patterns and force distributions during respiration. Patient-specific models may help in evaluation and treatment planning. Laryngoscope, 2010 [source] Multimodal Flow Visualization and Optimization of Pneumatic Blood Pump for Sorbent Hemodialysis SystemARTIFICIAL ORGANS, Issue 4 2009Fangjun Shu Abstract:, Renal Solutions Allient Sorbent Hemodialysis System utilizes a two-chambered pneumatic pump (Pulsar Blood Pump, Renal Solutions, Inc., Warrendale, PA, USA) to avoid limitations associated with peristaltic pumping systems. Single-needle access is enabled by counter-pulsing the two pump chambers, thereby obviating compliance chambers or blood reservoirs. Each chamber propels 20 cc per pulse of 3 s (dual access) or 6 s (single access) duration, corresponding to a peak Reynolds number of approximately 8000 (based on inlet velocity and chamber diameter). A multimodal series of flow visualization studies (tracer particle, dye washout, and dye erosion) was conducted on a sequence of pump designs with varying port locations and diaphragms to improve the geometry with respect to risk of thrombogenesis. Experiments were conducted in a simplified flow loop using occluders to simulate flow resistance induced by tubing and dialyzer. Tracer visualization revealed flow patterns and qualitatively indicated turbulence intensity. Dye washout identified dwell volume and areas of flow stagnation for each design. Dye erosion results indicated the effectiveness and homogeneity of surface washing. Compared to a centered inlet which resulted in a fluid jet that produced two counter-rotating vortices, a tangential inlet introduced a single vortex, and kept the flow laminar. It also provided better surface washing on the pump inner surface. However, a tangential outlet did not present as much benefit as expected. On the contrary, it created a sharp defection to the flow when transiting from filling to ejection. [source] |