TUNEL-positive Cells (tunel-positive + cell)

Distribution by Scientific Domains


Selected Abstracts


Sevoflurane-induced post-conditioning has no beneficial effects on neuroprotection after incomplete cerebral ischemia in rats

ACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 3 2010
H.-M. LEE
Background: The aim of this study was to investigate whether sevoflurane-induced post-conditioning has a neuroprotective effect against incomplete cerebral ischemia in rats. Methods: After cerebral ischemia by right common carotid artery occlusion in combination with hemorrhagic hypotension (35 mmHg) for 30 min, 1.0 minimum alveolar concentration of sevoflurane was administered for 15 min (Post-C 15, n=8), 30 min (Post-C 30, n=8), or 60 min (Post-C 60, n=8) in rats. Sevoflurane was not administered in control (n=8) and sham control rats (n=8). Neurologic evaluations were performed at 24, 48, and 72 h after ischemia. Degrees of neuronal damage in ischemic hippocampal CA1 and the cortex were assessed by counting eosinophilic neurons, and detection of DNA fragmentation was performed by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining. Results: Neurologic deficit scores in the Post-C 60 group were higher than in the control group at 48 and 72 h post-ischemia (P<0.05). No differences were observed in the percentages of eosinophilic neurons among the control (CA1: 37.3 ± 25.4, cortex: 26.0 ± 8.9), Post-C 15 (CA1: 54.0 ± 21.4, cortex: 30.8 ± 19.9), or Post-C 30 (CA1: 68.4 ± 17.5, cortex: 38.0 ± 11.0) groups in ischemic CA1 and cortices. However, in the Post-C 60 group, the percentages of eosinophilic neurons were higher than in the control group in CA1 and cortices (P<0.05). The percentages of TUNEL-positive cell were similar in the control group and the post-conditioned groups. Conclusion: These findings show that sevoflurane administration after ischemia does not provide neuroprotection in rats subjected to incomplete cerebral ischemia. [source]


The role of cell death in sexually dimorphic muscle development: Male-specific muscles are retained in female bax/bak knockout mice

DEVELOPMENTAL NEUROBIOLOGY, Issue 11 2008
Dena A. Jacob
Abstract The bulbocavernosus (BC) and levator ani (LA) muscles are present in males but absent or severely reduced in females, and the fate of these muscles controls the survival of motoneurons in the sexually dimorphic spinal nucleus of the bulbocavernosus. However, the mechanism underlying the sex difference in BC and LA development has been controversial. We examined the role of cell death in sexual differentiation of the bulbocavernosus BC/LA muscles in mice. Muscle development was mapped from embryonic day 16 (E16) to postnatal day 5 (P5). A sex difference (male > female) first arose on E17 (BC) or E18 (LA), and increased in magnitude postnatally. TUNEL labeling revealed dying cells in the BC and LA muscles of both sexes perinatally. However, females had a significantly higher density of TUNEL-positive cells than did males. A role for the proapoptotic factors, Bax and Bak, in BC/LA development was tested by examining mice lacking one or both of these proteins. In females lacking either Bax or Bak, the BC was absent and the LA rudimentary. Deletion of both bax and bak genes, however, rescued the BC, increased LA size ,20-fold relative to controls, and virtually eliminated TUNEL-positive cells in both muscles. We conclude that cell death plays an essential role in sexual differentiation of the BC/LA muscles. The presence of either Bax or Bak is sufficient for cell death in the BC/LA, whereas the absence of both prevents sexually dimorphic muscle cell death. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2008. [source]


Polysialic acid controls NCAM-induced differentiation of neuronal precursors into calretinin-positive olfactory bulb interneurons

DEVELOPMENTAL NEUROBIOLOGY, Issue 9 2008
Iris Röckle
Abstract Understanding the mechanisms that regulate neurogenesis is a prerequisite for brain repair approaches based on neuronal precursor cells. One important regulator of postnatal neurogenesis is polysialic acid (polySia), a post-translational modification of the neural cell adhesion molecule NCAM. In the present study, we investigated the role of polySia in differentiation of neuronal precursors isolated from the subventricular zone of early postnatal mice. Removal of polySia promoted neurite induction and selectively enhanced maturation into a calretinin-positive phenotype. Expression of calbindin and Pax6, indicative for other lineages of olfactory bulb interneurons, were not affected. A decrease in the number of TUNEL-positive cells indicated that cell survival was slightly improved by removing polySia. Time lapse imaging revealed the absence of chain migration and low cell motility, in the presence and absence of polySia. The changes in survival and differentiation, therefore, could be dissected from the well-known function of polySia as a promoter of precursor migration. The differentiation response was mimicked by exposure of cells to soluble or substrate-bound NCAM and prevented by the C3d-peptide, a synthetic ligand blocking NCAM interactions. Moreover, a higher degree of differentiation was observed in cultures from polysialyltransferase-depleted mice and after NCAM exposure of precursors from NCAM-knockout mice demonstrating that the NCAM function is mediated via heterophilic binding partners. In conclusion, these data reveal that polySia controls instructive NCAM signals, which direct the differentiation of subventricular zone-derived precursors towards the calretinin-positive phenotype of olfactory bulb interneurons. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2008 [source]


Involvement of mitochondrial signaling pathways in the mechanism of Fas-mediated apoptosis after spinal cord injury

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2009
Wen Ru Yu
Abstract Activation of the Fas receptor has been recently linked to apoptotic cell death after spinal cord injury (SCI). Although it is generally considered that Fas activation mediates apoptosis predominantly through the extrinsic pathway, we hypothesized that intrinsic mitochondrial signaling could be involved in the underlying mechanism of Fas-induced apoptosis after SCI. In the present study, we utilized the FejotaTM clip compression model of SCI at T5,6 in C57BL/6 Fas-deficient (lpr) and wild-type mice. Complementary studies were conducted using an in vitro model of trauma or a Fas-activating antibody to induce apoptosis in primary neuronal,glial mixed spinal cord cultures. After in vivo SCI, lpr mice, in comparison with wild-type mice, exhibited reduced numbers of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells at the lesion, reduced expression of truncation of Bid (tBid), apoptosis-inducing factor, activated caspase-9 and activated caspase-3, and increased expression of the antiapoptotic proteins Bcl-2 and Bcl-xL. After in vitro neurotrauma or the induction of Fas signaling by the Jo2 activating antibody, lpr spinal cord cultures showed an increased proportion of cells retaining mitochondrial membrane integrity and a reduction of tBid expression, caspase-9 and caspase-3 activation, and TUNEL-positive cells as compared to wild-type spinal cord cultures. The neutralization of Fas ligand (FasL) protected against traumatically induced or Fas-mediated caspase-3 activation and the loss of mitochondrial membrane potential and tBid expression in wild-type spinal cord cultures. However, in lpr spinal cord cultures, FasL neutralization had no protective effects. In summary, these data provide direct evidence for the induction of intrinsic mitochondrial signaling pathways following Fas activation after SCI. [source]


Deafferentation-induced apoptosis of neurons in thalamic somatosensory nuclei of the newborn rat: critical period and rescue from cell death by peripherally applied neurotrophins

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2000
Alfonso Baldi
Abstract This study shows that unilateral transection of the infraorbital nerve (ION) in newborn (P0) rats induces apoptosis in the contralateral ventrobasal thalamic (VB) complex, as evidenced by terminal transferase-mediated deoxyuridine triphosphate-biotin nick end labelling (TUNEL) and electron miscroscopy. Double-labelling experiments using retrograde transport of labelled microspheres injected into the barrel cortex, followed by TUNEL staining, show that TUNEL-positive cells are thalamocortical neurons. The number of TUNEL-positive cells had begun to increase by 24 h postlesion, increased further 48 h after nerve section, and decreased to control levels after 120 h. Lesion-induced apoptosis in the VB complex is less pronounced if ION section is performed at P4, and disappears if the lesion is performed at P7. This time course closely matches the critical period of lesion-induced plasticity in the barrel cortex. Nerve growth factor (NGF) or brain-derived neurotrophic factor (BDNF), applied on the ION stump alone or in combination, are able to partially rescue thalamic neurons from apoptosis. Total cell counts in the VB complex of P7 animals that underwent ION section at P0 confirm the rescuing effect of BDNF and NGF. Blockade of axonal transport in the ION mimics the effect of ION section. These data suggest that survival-promoting signals from the periphery, maybe neurotrophins, are required for the survival of higher-order neurons in the somatosensory system during the period of fine-tuning of neuronal connections. We also propose that anterograde transneuronal degeneration in the neonatal rat trigeminal system may represent a new animal model for studying the pathways of programmed cell death in vivo. [source]


Green tea extract reduces induction of p53 and apoptosis in UVB-irradiated human skin independent of transcriptional controls

EXPERIMENTAL DERMATOLOGY, Issue 1 2009
Christian D. Mnich
Abstract:, Ultraviolet (UV) irradiation plays a pivotal role in human skin carcinongenesis. Preclinically, systemically and topically applied green tea extract (GTE) has shown reduction of UV-induced (i) erythema, (ii) DNA damage, (iii) formation of radical oxygen species and (iv) downregulation of numerous factors related to apoptosis, inflammation, differentiation and carcinogenesis. In humans, topical GTE has so far only been tested in limited studies, with usually very high GTE concentrations and over short periods of time. Both chemical stability of GTE and staining properties of highly concentrated green tea polyphenols limit the usability of highly concentrated green tea extracts in cosmetic products. The present study tested the utility of stabilized low-dose GTE as photochemopreventive agents under everyday conditions. We irradiated with up to 100 mJ/cm2 of UVB light skin patches which were pretreated with either OM24® -containing lotion or a placebo lotion. Biopsies were taken from both irradiated and un-irradiated skin for both immunohistochemistry and DNA microarray analysis. We found that while OM24® treatment did not significantly affect UV-induced erythema and thymidine dimer formation, OM24® treatment significantly reduced UV-induced p53 expression in keratinocytes. We also found that OM24® treatment significantly reduced the number of apoptotic keratinocytes (sunburn cells and TUNEL-positive cells). Carefully controlled DNA microarray analyses showed that OM24® treatment does not induce off-target changes in gene expression, reducing the likelihood of unwanted side-effects. Topical GTE (OM24®) reduces UVB-mediated epithelial damage already at low, cosmetically usable concentrations, without tachyphylaxis over 5 weeks, suggesting GTE as suitable everyday photochemopreventive agents. [source]


Foot shock stress prolongs the telogen stage of the spontaneous hair cycle in a non-depilated mouse model

EXPERIMENTAL DERMATOLOGY, Issue 7 2007
Mirei Katayama
Abstract:, Background:, There is an increasing evidence to indicate that stress can influence skin disease and cutaneous functions. Previous studies have shown that stress alters the murine hair cycle; however, these studies have been carried out by using mouse models in which the hair cycle is forcibly synchronized after depilation. Objective:, To examine whether foot shock stress (FS) changes the spontaneous hair cycle in a non-depilated animal model, and to evaluate the role of mast cells and substance P (SP) in the influence of stress on the hair cycle. Methods:, Changes in the spontaneous hair cycle and the inhibitory effects of a specific SP NK1 receptor antagonist were examined in non-depilated mice during 3,4 weeks of FS. Results:, Foot shock stress prolonged the telogen stage of the hair cycle and delayed the induction of the subsequent anagen stage in the animal model. FS caused an increase in the ratio of de-granulated mast cells in the skin, an increase in the number of TUNEL-positive cells, and a decrease in the number of Ki67-positive cells. The NK1 receptor antagonist, WIN 62577, inhibited these stress responses. Conclusion:, Our results strongly support previous work, demonstrating that stress alters active hair-cycling in vivo through the action of SP. [source]


Enhanced Expression of Transcription Factor E2F in Helicobacter pylori -infected Gastric Mucosa

HELICOBACTER, Issue 3 2002
Hajime Isomoto
Abstract Objective.Helicobacter pylori is implicated in gastric carcinogenesis through increased gastric epithelial cell turnover. In fact, high proportions of proliferating and apoptotic epithelial cells are found in H. pylori -infected gastric mucosa. E2F, a transcription factor, induces coordinated transactivation of a set of genes involved in cell cycle progression. The aim of this study was to investigate the expression of E2F in H. pylori -infected gastric mucosa and examine the correlation between such expression and gastric epithelial cell proliferation and apoptosis. Methods. Twenty-five patients with H. pylori -associated gastritis (HAG) and 13 control subjects negative for H. pylori were examined. E2F expression was studied in situ by Southwestern histochemistry, a method used to localize transcription factors. Labeled double-stranded oligo-DNA with specific consensus sequence for E2F binding sites was reacted with frozen sections from antral biopsy specimens obtained at endoscopy. Gastric epithelial cell proliferation was assessed by immunostaining of proliferating cell nuclear antigen (PCNA), while apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL). The percentages of epithelial cells with nuclear staining for PCNA and E2F were expressed as a positivity index (PI). The percentage of TUNEL-positive epithelial cells was defined as apoptotic index. Results. E2F was expressed in the nuclei of gastric epithelial cells within gastric pits. E2F PI in H. pylori -infected gastric mucosa was significantly higher than that in noninfected. Expression of E2F correlated well with PCNA-positive epithelial cells. We also demonstrated colocalization of PCNA with E2F expression in the same epithelial cells. Apoptotic index was also high in H. pylori -infected mucosa, and correlated with E2F PI. Conclusion. Our results demonstrated a significant increase in the expression of E2F in H. pylori -infected mucosa, which correlated with both the percentages of PCNA- and TUNEL-positive cells. Our results suggest that enhanced E2F expression in gastric mucosa may be involved in H. pylori -related gastric carcinogenesis through accelerated cell turnover. [source]


Alcohol inhibition of neurogenesis: A mechanism of hippocampal neurodegeneration in an adolescent alcohol abuse model

HIPPOCAMPUS, Issue 5 2010
Stephanie A. Morris
Abstract Adolescents diagnosed with an alcohol use disorder show neurodegeneration in the hippocampus, a region important for learning, memory, and mood regulation. This study examines a potential mechanism by which excessive alcohol intake, characteristic of an alcohol use disorder, produces neurodegeneration. As hippocampal neural stem cells underlie ongoing neurogenesis, a phenomenon that contributes to hippocampal structure and function, we investigated aspects of cell death and cell birth in an adolescent rat model of an alcohol use disorder. Immunohistochemistry of various markers along with Bromo-deoxy-Uridine (BrdU) injections were used to examine different aspects of neurogenesis. After 4 days of binge alcohol exposure, neurogenesis was decreased by 33 and 28% at 0 and 2 days after the last dose according to doublecortin expression. To determine whether this decrease in neurogenesis was due to effects on neural stem cell proliferation, quantification of BrdU-labeled cells revealed a 21% decrease in the dentate gyrus of alcohol-exposed brains. Cell survival and phenotype of BrdU-labeled cells were assessed 28 days after alcohol exposure and revealed a significant, 50% decrease in the number of surviving cells in the alcohol-exposed group. Reduced survival was supported by significant increases in the number of pyknotic-, FluoroJade B positive-, and TUNEL-positive cells. However, so few cells were TUNEL-positive that cell death is likely necrotic in this model. Although alcohol decreased the number of newborn cells, it did not affect the percentage of cells that matured into neurons (differentiation). Thus, our data support that in a model of an adolescent alcohol use disorder, neurogenesis is impaired by two mechanisms: alcohol-inhibition of neural stem cell proliferation and alcohol effects on new cell survival. Remarkably, alcohol inhibition of neurogenesis may outweigh the few dying cells per section, which implies that alcohol inhibition of neurogenesis contributes to hippocampal neurodegeneration in alcohol use disorders. © 2009 Wiley-Liss, Inc. [source]


Increased expression of glial cell line-derived neurotrophic factor protects against oxidative damage-induced retinal degeneration

JOURNAL OF NEUROCHEMISTRY, Issue 3 2007
Aling Dong
Abstract Oxidative damage contributes to retinal cell death in patients with age-related macular degeneration or retinitis pigmentosa. One approach to treatment is to identify and eliminate the sources of oxidative damage. Another approach is to identify treatments that protect cells from multiple sources of oxidative damage. In this study, we investigated the effect of increased expression of glial cell line-derived neurotrophic factor (GDNF) in three models of oxidative damage-induced retinal degeneration. Double transgenic mice with doxycycline-inducible expression of GDNF in the retina were exposed to paraquat, FeSO4, or hyperoxia, all sources of oxidative damage and retinal cell death. Compared to controls, mice with increased expression of GDNF in the retina showed significant preservation of retinal function measured by electroretinograms, reduced thinning of retinal cell layers, and fewer TUNEL-positive cells indicating less retinal cell death. Mice over-expressing GDNF also showed less staining for acrolein, nitrotyrosine, and 8-hydroxydeoxyguanosine, indicating less oxidative damage to lipids, proteins, and DNA. This suggests that GDNF did not act solely to allow cells to tolerate higher levels of oxidative damage before initiation of apoptosis, but also reduced damage from oxidative stress to critical macromolecules. These data suggest that gene transfer of Gdnf should be considered as a component of therapy for retinal degenerations in which oxidative damage plays a role. [source]


Induction of Oxidative DNA Damage in the Peri-Infarct Region After Permanent Focal Cerebral Ischemia

JOURNAL OF NEUROCHEMISTRY, Issue 4 2000
Tetsuya Nagayama
Abstract: To address the role of oxidative DNA damage in focal cerebral ischemia lacking reperfusion, we investigated DNA base and strand damage in a rat model of permanent middle cerebral artery occlusion (MCAO). Contents of 8-hydroxyl-2,-deoxyguanosine (8-OHdG) and apurinic/apyrimidinic abasic sites (AP sites), hallmarks of oxidative DNA damage, were quantitatively measured in nuclear DNA extracts from brains obtained 4-72 h after MCAO. DNA single- and double-strand breaks were detected on coronal brain sections using in situ DNA polymerase I-mediated biotin-dATP nick-translation (PANT) and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL), respectively. Levels of 8-OHdG and AP sites were markedly elevated 16-72 h following MCAO in the frontal cortex, representing the peri-infarct region, but levels did not significantly change within the ischemic core regions of the caudateputamen and parietal cortex. PANT- and TUNEL-positive cells began to be detectable 4-8 h following MCAO in the caudate-putamen and parietal cortex and reached maximal levels at 72 h. PANT- and TUNEL-positive cells were also detected 16-72 h after MCAO in the lateral frontal cortex within the infarct border, where many cells also showed colocalization of DNA single-strand breaks and DNA fragmentation. In contrast, levels of PANT-positive cells alone were transiently increased (16 h after MCAO) in the medial frontal cortex, an area distant from the infarct zone. These data suggest that within peri-infarct brain regions, oxidative injury to nuclear DNA in the form of base and strand damage may be a significant and contributory cause of secondary expansion of brain damage following permanent focal ischemia. [source]


Pregnenolone Sulfate, a Naturally Occurring Excitotoxin Involved in Delayed Retinal Cell Death

JOURNAL OF NEUROCHEMISTRY, Issue 6 2000
C. Cascio
Abstract: The present study was designed to investigate the neurosteroid pregnenolone sulfate (PS), known for its ability to modulate NMDA receptors and interfere with acute excitotoxicity, in delayed retinal cell death. Three hours after exposure of the isolated and intact retina to a 30-min PS pulse, DNA fragmentation as assessed by genomic DNA gel electrophoresis and a modified in situ terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) method appeared concurrently with an increase in superoxide dismutase (SOD) activity and thiobarbituric acid-reactive substances (TBARS) levels. At 7 h, the increased amount of DNA laddering was accompanied by a higher number of TUNEL-positive cells in the inner nuclear and ganglion cell layers. Necrotic signs were characterized by DNA smear migration, lactate dehydrogenase (LDH) release, and damage mainly in the inner nuclear layer. PS-induced delayed cell death was markedly reduced by the NMDA receptor antagonists 4-(3-phosphonopropyl)-2-piperazinecarboxylic acid and 3,-hydroxy-5,-pregnan-20-one sulfate but completely blocked after concomitant addition of the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione. Steroids with antioxidant properties (progesterone, dehydroepiandrosterone and its sulfate ester, and 17,-estradiol) differently prevented PS-induced delayed cell death. Cycloheximide treatment protected against DNA fragmentation and LDH release but failed to prevent the rise in SOD activity and TBARS level. We conclude that a brief PS pulse causes delayed cell death in a slowly evolving apoptotic fashion characterized by a cycloheximide-sensitive death program downstream of reactive oxygen species generation and lipid peroxidation, turning into secondary necrosis in a retinal cell subset. [source]


Antiapoptotic and antiautophagic effects of glial cell line-derived neurotrophic factor and hepatocyte growth factor after transient middle cerebral artery occlusion in rats

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 10 2010
Jingwei Shang
Abstract Glial cell line-derived neurotrophic factor (GDNF) and hepatocyte growth factor (HGF) are strong neurotrophic factors, which function as antiapoptotic factors. However, the neuroprotective effect of GDNF and HGF in ameliorating ischemic brain injury via an antiautophagic effect has not been examined. Therefore, we investigated GDNF and HGF for changes of infarct size and antiapoptotic and antiautophagic effects after transient middle cerebral artery occlusion (tMCAO) in rats. For the estimation of ischemic brain injury, the infarct size was calculated at 24 hr after tMCAO by HE staining. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin in situ nick end labeling (TUNEL) was performed for evaluating the antiapoptotic effect. Western blot analysis of microtubule-associated protein 1 light chain 3 (LC3) and immunofluorescence analysis of LC3 and phosphorylated mTOR/Ser2448 (p-mTOR) were performed for evaluating the antiautophagic effect. GDNF and HGF significantly reduced infarct size after cerebral ischemia. The amounts of LC3-I plus LC3-II (relative to ,-tubulin) were significantly increased after tMCAO, and GDNF and HGF significantly decreased them. GDNF and HGF significantly increased p-mTOR-positive cells. GDNF and HGF significantly decreased the numbers of TUNEL-, LC3-, and LC3/TUNEL double-positive cells. LC3/TUNEL double-positive cells accounted for about 34.3% of LC3 plus TUNEL-positive cells. This study suggests that the protective effects of GDNF and HGF were greatly associated with not only the antiapoptotic but also the antiautophagic effects; maybe two types of cell death can occur in the same cell at the same time, and GDNF and HGF are capable of ameliorating these two pathways. © 2010 Wiley-Liss, Inc. [source]


Protective role of COMP-Ang1 in ischemic rat brain

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 5 2010
Hye Young Shin
Abstract In cerebral ischemia, the induction of angiogenesis may represent a natural defense mechanism that enables the hypoxic brain to avoid progression into infarction. Angiopoietin-1 (Ang1) is known to produce non-leaky and stable blood vessel formation mainly by the Tie2 receptor. Therefore, we envisioned that the application of cartilage oligomeric matrix protein-Ang1 (COMP-Ang1), a soluble, stable, and potent form of Ang1, would promote angiogenesis and provide a protective effect following unilateral middle cerebral artery occlusion (MCAO) in rats. To this end, we employed a 2-hour-MCAO model, and treated rats with adenovirus encoding COMP-Ang1 (Ade-COMP-Ang1) or control virus encoding ,-gal (Ade-,-gal). Time course magnetic resonance images (MRIs) revealed significantly reduced infarct volume in the rats treated with Ade-COMP-Ang1 with an improvement of post-ischemic neurological deficits compared with rats treated with Ade-,-gal. Moreover, compared to the rats treated with Ade-,-gal, the rats treated with Ade-COMP-Ang1 showed an increase in blood vessels, especially in the border zone adjacent to the infarction, increased number of endogenous neuronal progenitor cells in the ischemic brain, and decreased number of TUNEL-positive cells. Taken together, COMP-Ang1 reduced infarct volume and consequently attenuated post-ischemic neurological deficits through enhanced angiogenesis and increased viable cell mass of neuronal cells. © 2009 Wiley-Liss, Inc. [source]


Fibroblast growth factor-9 inhibits astrocyte differentiation of adult mouse neural progenitor cells

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 10 2009
Maggie Lum
Abstract Fibroblast growth factor-9 (FGF9) is expressed in the CNS and is reported to be a mitogen for glial cells, to promote neuronal survival, and to retard oligodendrocyte differentiation. Here we examined the effects of FGF9 on the differentiation, survival, and proliferation of adult neural progenitor cells derived from the adult mouse subventricular zone. FGF9 by itself induced neurosphere proliferation, but its effects were modest compared with those of epidermal growth factor and FGF2. When neurospheres were dissociated and plated for differentiation, FGF9 increased total cell number over time in a dose-dependent manner. Ki67 immunostaining and bromodeoxyuridine incorporation indicated that this was at least partially due to the continued presence of proliferative nestin-positive neural progenitor cells and ,III tubulin-positive neuronal precursors. FGF9 also promoted cell survival as indicated by a decreased number of TUNEL-positive cells over time. Assessment of differentiation showed that FGF9 increased neuron generation that reflected the increase in total cell number; however, the percentage of progenitor cells differentiating into neurons was slightly decreased. FGF9 had a modest effect on oligodendrocyte generation, although it appeared to slow the maturation of oligodenrocytes at higher concentrations. The most marked effect on differentiation was an almost total lack of glial fibrillary acidic protein (GFAP)-positive astrocytes up to 7 days following FGF9 addition, indicating that astrocyte differentiation was strongly inhibited. Total inhibition required prolonged treatment, although a 1-hr pulse was sufficient for partial inhibition, and bone morphogenic protein-4 could partially overcome the FGF9 inhibition of astrocyte differentiation. FGF9 therefore has multiple effects on adult neural precursor cell function, enhancing neuronal precursor proliferation and specifically inhibiting GFAP expression. © 2009 Wiley-Liss, Inc. [source]


Temporal and spatial profiles of cell loss after spinal cord injury: Reduction by a metalloporphyrin

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 10 2007
Xiang Ling
Abstract This study presents quantitative temporal and spatial profiles of neuronal loss and apoptosis following a contusion spinal cord injury (50 g · cm). The profiles were evaluated by counting the cresol violet,stained surviving cells and the total number of TUNEL-positive cells and of TUNEL-positive neurons in sections 0, 4 mm from the epicenter and 1, 6, 12, 24, 48, and 72 hr and 1 week postinjury. We demonstrated that neurons continue to disappear over 1 week postinjury and that neuronal loss shifts to areas longer distances from the epicenter over time. TUNEL-positive cells in both gray and white matter appeared after 6 hr, gradually increased to a peak level after 48 hr, and declined by 72 hr postinjury. TUNEL-positive neurons peaked earlier and were present for 1 week, although the total number of neurons was reduced significantly by the end of the week. The neuronal loss and apoptosis were partially prevented by a metalloporphyrin [Mn(III) tetrakis (4-benzoic acid) porphyrin (MnTBAP)]. We demonstrated that MnTBAP (10 and 50 mg/kg, given intraperitoneally) significantly reduced neuronal death in the sections 1,2.5 mm rostral and 1 mm caudal from the epicenter compared with that in the vehicle-treated group, suggesting MnTBAP is more effective in the sections rostral than in those caudal to the epicenter. MnTBAP (10 mg/kg) significantly reduced the number of TUNEL-positive neurons in the sections 1 mm caudal from the epicenter. Our profiles provide a database for pharmacological intervention, and our results on MnTBAP treatment support an important role for antioxidant therapy in spinal cord injury. © 2007 Wiley-Liss, Inc. [source]


Neutralization of the chemokine CXCL10 reduces apoptosis and increases axon sprouting after spinal cord injury

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 4 2006
Janette Glaser
Abstract Spinal cord injury (SCI) is followed by a secondary degenerative process that includes cell death. We have previously demonstrated that the chemokine CXCL10 is up-regulated following SCI and plays a critical role in T-lymphocyte recruitment to sites of injury and inhibition of angiogenesis; antibody-mediated functional blockade of CXCL10 reduced inflammation while enhancing angiogenesis. We hypothesized, based on these findings, that the injury environment established by anti-CXCL10 antibody treatment would support greater survival of neurons and enhance axon sprouting compared with the untreated, injured spinal cord. Here, we document gene array and histopathological data to support our hypothesis. Gene array analysis of treated and untreated tissue from spinal cord-injured animals revealed eight apoptosis-related genes with significant expression changes at 3 days postinjury. In support of these data, quantification of TUNEL-positive cells at 3 days postinjury indicated a 75% reduction in the number of dying cells in treated animals compared with untreated animals. Gene array analysis of treated and untreated tissue also revealed six central nervous system growth-related genes with significant expression changes in the brainstem at 14 days postinjury. In support of these data, quantification of anterograde-labeled corticospinal tract fibers indicated a 60,70% increase in axon sprouting caudal to the injury site in treated animals compared with untreated animals. These findings indicate that anti-CXCL10 antibody treatment provides an environment that reduces apoptosis and increases axon sprouting following injury to the adult spinal cord. © 2006 Wiley-Liss, Inc. [source]


Identity of TUNEL-positive cells in the oral buccal epithelium of normal mucosa and lichen lesions

JOURNAL OF ORAL PATHOLOGY & MEDICINE, Issue 5 2004
Andreas Karatsaidis
Background:,In situ detection of DNA fragmentation by TdT (terminal deoxynucleotidyl transferase)-mediated dUTP nick end labeling (TUNEL) is a widely used technique to identify apoptotic cells in the terminal phases of cell death. Several studies have shown that there are statistically increased numbers of TUNEL+ cells within the epithelium of oral lichen (OL). It was suggested that this indicates an increased rate of apoptosis among basal and suprabasal keratinocytes in OL epithelium. The aim of this study was to identify the TUNEL+ cells in the epithelium of erythematous (ERY) OL and normal oral mucosa (NOM). Methods:, Sections of biopsies from NOM and ERY OL were processed for TUNEL combined with immunostaining for pan-cytokeratin or for cell markers specifically expressed by different leukocytes. Results:, In NOM, TUNEL+ keratinocytes were almost exclusively seen in the outermost epithelial layers. This labeling was absent in ERY OL. In the basal and lower spinous layers, more TUNEL+ cell nuclei were seen in ERY OL as compared with NOM, in accordance with previous studies. The present observations show, however, that only very few of these cells were keratinocytes, but rather were CD4+ lymphocytes and CD68+ macrophages. There was no difference between the numbers of TUNEL+ keratinocytes in basal and lower spinous layers in ERY OL and NOM epithelium. No intraepithelial CD8+ lymphocytes, Langerhans cells, or mast cells were found to be TUNEL+. Conclusion:, The findings indicate that the pathologic changes in ERY OL epithelium cannot be explained by increased prevalence of terminal keratinocyte cell death identified by TUNEL. [source]


Recently identified a novel neuropeptide manserin colocalize with the TUNEL-positive cells in the top villi of the rat duodenum

JOURNAL OF PEPTIDE SCIENCE, Issue 6 2008
Aika Yajima
Abstract We recently isolated a novel 40 amino acid neuropeptide designated manserin from the rat brain. Manserin is derived from secretogranin II, a member of granin acidic secretory protein family by proteolytic processing, as previously reported secretoneurin and EM66. Manserin peptide are localized in the endocrine cells of the pituitary. In this study, we further investigated the manserin localization in the digestive system by immunohistochemical analysis using antimanserin antibody. In the duodenum, manserin immunostaining was exclusively observed in the nuclei of top villi instead of cytosol as observed in neurons in our previous study. Interestingly, manserin-positive cells in the duodenum are colocalized with terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) positive cells, the cells whose DNA was damaged. Since the top villi of duodenum epithelial cells are known to undergo spontaneous apoptosis during epithelial cell turn over, and since other peptides such as secretoneurin and EM66 derived from SgII have been reported to be cancer-related, these results indicated that manserin peptide may have a role in apoptosis and/or cancer pathogenesis in the digestive organ. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd. [source]


Age-related changes of cornu ammonis 1 pyramidal neurons in gerbil transient ischemia

NEUROPATHOLOGY, Issue 3 2000
Chiharu Tamagaki
This study reports that postischemic apoptotic cell death of the hippocampal cornu ammonis (CA) 1 neurons is delayed in aged gerbils. Age-related changes in the process of CA1 neuronal death following transient ischemia was studied. Two groups of Mongolian gerbils were used in this study, which compared adult (4-month-old) and aged (24-month-old) animals by hematoxylin,eosin stain, in situ nick-end labeling (TUNEL method) and electron microscopy. In the process of neuronal death, neuronal loss of the aged group was histologically less severe than that of the adult group. TUNEL-positive cells were found on days 3,5 after ischemia in the adult group, while they were still found on day 7 in the aged group. The apoptotic process of the aged group was delayed compared to the adult group. Furthermore, lipofuscin was ultrastructurally observed inside the apoptotic body 5 days after ischemia in CA1 pyramidal neurons of the aged group. It is likely that colocalization of lysosomal enzyme cathepsin D with lipofuscin might be associated with the age-related alteration of lysosomal system in the neurons. Altogether these data suggest that age-related lysosomal changes might affect the apoptotic cascade process in postischernic CA1 neurons. [source]


Effect of oriental herbal prescription Guan-Xin-Er-Hao on coronary flow in healthy volunteers and antiapoptosis on myocardial ischemia-reperfusion in rat models

PHYTOTHERAPY RESEARCH, Issue 10 2007
Jianlei Zhao
Abstract Ischemic heart disease (IHD) is the main cause of death and a major public health problem in the world. The traditional herbal medicinal formula Guan-Xin-Er-Hao (GXEH) has been used in China and East Asia for the treatment of coronary heart disease, however, the underlying cardioprotection mechanisms remain unclear. To make clear the antiischemic mechanism involved, GXEH was orally administered to 15 healthy volunteers. Heart rates (HR), blood pressure and coronary flow (CF) velocity before and 1 h after a single oral dose of GXEH were observed and compared. It was demonstrated that the oral administration of GXEH increased CF acutely in a dose-dependent manner without modification of systemic hemodynamic parameters. Moreover, the myocardial protection function of GXEH was also experimentally examined in ischemia-reperfusion (I/R) rat models. Apoptosis was measured quantitatively by the terminal transferase UTP nick end-labeling (TUNEL) method and confirmed by caspase-3 activity. The infarct size and TUNEL-positive cells of GXEH-treated group (20 g/kg) were reduced significantly, which was consistent with the decreased caspase-3 activity. These suggest that GXEH protects hearts from ischemia injury by increasing CF and reduces infarct size by inhibiting myocardial apoptosis. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Amygdala kindling develops without mossy fiber sprouting and hippocampal neuronal degeneration in rats

PSYCHIATRY AND CLINICAL NEUROSCIENCES, Issue 6 2001
Mariko Osawa MD
Abstract Repeated electrical stimulation of limbic structures has been reported to produce the kindling effect together with morphological changes in the hippocampus such as mossy fiber sprouting and/or neuronal loss. However, to argue against a causal role of these neuropathological changes in the development of kindling-associated seizures, we examined mossy fiber sprouting in amygdala (AM)-kindled rats using Timm histochemical staining, and evaluated the hippocampal neuronal degeneration in AM-kindled rats by terminal deoxynucleotidyl transferase-mediated digoxigenin-11-dUTP nick end labelling (TUNEL). Amygdala kindling was established by 10.3 ± 0.7 electrical stimulations, and no increase in Timm granules (neuronal sprouting) was observed up to the time of acquisition of a fully kindled state. However, the density and distribution of Timm granules increased significantly in the dentate gyrus compared with unkindled rats after 29 after-discharges or more than 10 kindled convulsions. In addition, no significant increase in TUNEL-positive cells was found in the hilar polymorphic neurons or in CA3 pyramidal neurons of the kindled rats that had fewer than 29 after-discharges. However, a significant increase of TUNEL-positive cells was found in the granule cell layer in the dentate gyrus of the stimulated side after 18 after-discharges or 10 kindled convulsions. Our result show that AM kindling develops without evidence of mossy fiber sprouting, and that mossy fiber sprouting may appear after repeated kindled convulsions, following death of the granule cells in the dentate gyrus. [source]


Inhibition of Matrix Metalloproteinase-9 Attenuates Acute Small-for-Size Liver Graft Injury in Rats

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 4 2010
Z. Y. Ma
Ischemia/reperfusion (I/R) and portal hypertension have been implicated in small-for-size liver graft dysfunction. Matrix metalloproteinases-2 and -9 (MMP-2/9) are critically proposed to involve in hepatic I/R injury and activated by hemodynamic force. We hypothesized that MMP-2/9 overexpression played a crucial role in acute graft injury following small-for-size liver transplantation (LT). Rats were randomly assigned into four groups: 75% partial hepatectomy (PH); 100% LT; 25% LT and 25% LT treated with CTT peptide (MMP-2/9 inhibitor). ELISA, real-time PCR, gelatin zymography and immunohistochemistry were used to determine the expression pattern of MMP-2/9 in liver tissue. MMP-9 expression was significantly increased 6 h after reperfusion and reached a peak 12 h in the 25% LT group, whereas MMP-2 was expressed in all groups invariably. Compared with the 25% LT group, rats from CTT-treated group exhibited markedly decreased alanine aminotransferase and total bilirubin values, downregulated proinflammatory cytokines, attenuated malondialdehyde (MDA) and myeloperoxidase (MPO) activities, and improved liver histology. Likewise, MMP-9 inhibition significantly reduced number of TUNEL-positive cells and caspase-3 activity, along with decreased protein levels of Fas and Fas-L. Specifically, rat survival was also improved in the CTT-treated group. These results support critical function of MMP-9 involved in acute small-for-size livergraft injury. [source]


Epithelial Cell Proliferation and Apoptosis in the Developing Murine Palatal Rugae

ANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 1 2002
M. TAKANOSU
Epithelial cell proliferation and apoptosis during morphogenesis of the murine palatal rugae (PR) were examined histochemically by using anti-bromodeoxyuridine (BrdU) and the terminal deoxynucleotidyl transferase-mediated UTP nick-end-labelling (TUNEL) technique. Formation of the PR rudiment was observed as an epithelial placode in fetuses at 12.5 days post-coitus (dpc). During the PR formation, BrdU-positive cells were detected mainly in the epithelium of the interplacode and interprotruding areas in fetuses administered BrdU maternally at 2 h before killing. TUNEL-positive cells were detected only at the epithelial placode area in 12.5,14.5 dpc. At 16.5,18.5 dpc, the BrdU-positive cells were decreased in number in the epithelial cells at the interprotruding area of the PR. Only a few TUNEL-positive cells were observed in the protruding area of the PR at 16.5 dpc. These results suggest that cell proliferation and apoptosis in the palatal epithelium are involved spatiotemporally in the murine PR morphogenesis. [source]


Cilostazol enhances apoptosis of synovial cells from rheumatoid arthritis patients with inhibition of cytokine formation via Nrf2-linked heme oxygenase 1 induction

ARTHRITIS & RHEUMATISM, Issue 3 2010
So Youn Park
Objective To assess the effects of cilostazol in inhibiting proliferation and enhancing apoptosis in synovial cells from patients with rheumatoid arthritis (RA). Methods Synovial cell proliferation was measured by MTT assay. The expression of NF-,B, I,B,, Bcl-2, Bax, heme oxygenase 1 (HO-1), and Nrf2 was determined by Western blotting. Results Cilostazol suppressed synovial cell proliferation by arresting the G2/M phases of the cell cycle, and this was reversed by KT5720, an inhibitor of protein kinase A. Cilostazol increased the number of TUNEL-positive cells, with increased cytochrome c release and apoptosis-inducing factor translocation as well as increased caspase 3 activation. Cilostazol (10 ,M) and cobalt protoporphyrin IX (CoPP) increased HO-1 messenger RNA and protein expression. These effects were suppressed by zinc protoporphyrin IX (ZnPP), an HO-1 inhibitor. Cilostazol and CoPP significantly increased I,B, in the cytosol and decreased NF-,B p65 expression in the nucleus. Increased expression of tumor necrosis factor , (TNF,), interleukin-1, (IL-1,), and IL-6 induced by lipopolysaccharide was attenuated by cilostazol and CoPP, and this was reversed by ZnPP. In mice with collagen-induced arthritis treated with cilostazol (10 and 30 mg/kg/day), paw thickness was decreased with increased apoptotic cells in the joints. In synovial cells transfected with small interfering RNA (siRNA) targeting HO-1, cilostazol did not suppress expression of TNF,, IL-1,, and IL-6, in contrast to findings with negative control cells. Cilostazol- and CoPP-induced HO-1 expression was diminished in cells transfected with Nrf2 siRNA. Conclusion Cilostazol suppressed proliferation of synovial cells from RA patients by enhancing apoptosis, and also inhibited cytokine production via mediation of cAMP-dependent protein kinase activation,coupled Nrf2-linked HO-1 expression. [source]


SIRT1 regulation of apoptosis of human chondrocytes

ARTHRITIS & RHEUMATISM, Issue 9 2009
Koji Takayama
Objective SIRT1 is known to inhibit apoptosis and to promote survival of various types of cells. However, the roles of SIRT1 in apoptosis of human chondrocytes have never been reported. We undertook this study to investigate the relationship of SIRT1 to apoptosis of human chondrocytes, which is a characteristic feature of osteoarthritis (OA). Methods The expression of SIRT1 in human chondrocytes was examined by reverse transcription,polymerase chain reaction, immunoblotting, and immunohistology of human cartilage samples. The expression of SIRT1 under catabolic, mechanical, and nutritional stresses was investigated by immunoblotting. To examine the effect of SIRT1 on apoptosis, SIRT1 was inhibited by small interfering RNA (siRNA) and activated by resveratrol during nitric oxide (NO),induced apoptosis. TUNEL staining and immunoblotting of cleaved poly(ADP-ribose) polymerase (PARP) were performed to detect apoptosis. To examine the mechanisms of apoptosis, we used immunoblotting to determine the levels of cleaved caspases and mitochondria-related apoptotic signaling proteins, Bax and Bcl-2, in the mitochondrial fraction. Results SIRT1 expression was confirmed in human chondrocytes and human cartilage samples. All catabolic, mechanical, and nutritional stresses inhibited SIRT1 expression. SIRT1 inhibition by siRNA for SIRT1 increased the percentage of TUNEL-positive cells and increased the amounts of cleaved PARP and cleaved caspases 3 and 9 induced by NO. In contrast, treatment with resveratrol decreased the percentage of TUNEL-positive cells and decreased the amounts of cleaved PARP and cleaved caspases 3 and 9 induced by NO. Furthermore, in the mitochondrial fraction, SIRT1 inhibition by siRNA for SIRT1 increased the amount of Bax but reduced the amount of Bcl-2, while resveratrol reduced the amount of Bax but increased the amount of Bcl-2. Conclusion These results indicate that SIRT1 regulates apoptosis in human chondrocytes through the modulation of mitochondria-related apoptotic signals. Further research on SIRT1 might contribute to resolving the pathogenesis of OA. [source]


Role of p53 in human chondrocyte apoptosis in response to shear strain

ARTHRITIS & RHEUMATISM, Issue 8 2009
Shingo Hashimoto
Objective Chondrocyte apoptosis plays an important role in cartilage degeneration in osteoarthritis (OA), and mechanical injury to cartilage induces chondrocyte apoptosis. In response to DNA damage, p53 expression is up-regulated, transcription activity is increased, and apoptosis signals are initiated. The p53-regulated apoptosis-inducing protein 1 (p53AIP-1) is one of the p53-regulated genes, and is activated in response to DNA damage. This study was undertaken to analyze p53 function after induction of apoptosis by shear strain in chondrocytes. Methods OA cartilage samples were obtained from subjects undergoing total knee replacement surgery, and normal cartilage samples were obtained from subjects undergoing surgery for femoral neck fracture. Chondrocytes were isolated from human cartilage and cultured. Expression of p53 and p53AIP in chondrocytes was detected by reverse transcriptase,polymerase chain reaction and Western blotting. Shear strain was introduced in normal human knee chondrocytes. To explore p53 function, normal human knee chondrocytes were pretreated with pifithrin-, or p53 small interfering RNA (siRNA) before induction of shear strain. Chondrocyte apoptosis was detected by expression of cleaved caspase 9 with Western blotting and TUNEL staining. Expression of p53 and p53AIP-1 was analyzed by Western blotting. Results OA and normal chondrocytes expressed p53. OA chondrocytes showed much higher expression of p53 and p53AIP-1 than did normal chondrocytes. TUNEL-positive cells and expression of p53, p53AIP-1, and cleaved caspase 9 were increased by shear strain, but chondrocyte apoptosis was suppressed after pretreatment with pifithrin-, or p53 siRNA. Conclusion Our findings indicate that p53 and p53AIP-1 play important roles in human chondrocyte apoptosis. Down-regulation of p53 expression prevents cartilage from undergoing apoptosis introduced by shear strain. [source]


Effects of 60 Hz 14 µT magnetic field on the apoptosis of testicular germ cell in mice

BIOELECTROMAGNETICS, Issue 1 2009
Yoon-Won Kim
Abstract We recently reported that continuous exposure, for 8 weeks, of extremely low frequency (ELF) magnetic field (MF) of 0.1 or 0.5 mT might induce testicular germ cell apoptosis in BALB/c mice. In that report, the ELF MF exposure did not significantly affect the body weight or testicular weight, but significantly increased the incidence of testicular germ cell death. In the present study, we aimed to further characterize the effect of a 16-week continuous exposure to ELF MF of 14 or 200 µT on testicular germ cell apoptosis in mice. There were no significant effects of MF on body weight and testosterone levels in mice. In TUNEL staining (In situ terminal deoxynucleotidyl transferase-mediated deoxy-UTP nick end labeling), germ cells showed a significantly higher apoptotic rate in exposed mice than in sham controls (P,<,0.001). TUNEL-positive cells were mainly spermatogonia. In an electron microscopic study, degenerating spermatogonia showed condensation of nuclear chromatin similar to apoptosis. These results indicate that apoptosis may be induced in spermatogenic cells in mice by continuous exposure to 60 Hz MF of 14 µT. Bioelectromagnetics 30:66,72, 2009. © 2008 Wiley-Liss, Inc. [source]


Hypoglycemia induced changes in cell death and cell proliferation in the organogenesis stage embryonic mouse heart

BIRTH DEFECTS RESEARCH, Issue 3 2004
Gautam S. Ghatnekar
Abstract BACKGROUND Hypoglycemia is a side effect of diabetes therapy and causes abnormal heart development. Embryonic heart cells are largely resistant to teratogen-induced apoptosis. METHODS Hypoglycemia was tested for effects on cell death and cell proliferation in embryonic heart cells by exposing mouse embryos on embryonic day (E) 9.5 (plug = E0.5) to hypoglycemia (30,50 mg/dl glucose) in vivo or in vitro for 24 hr. Long-term effects of in vivo exposure on conceptus viability were evaluated at E18.5. Cell death was evaluated on E10.5 by: 1) two TUNEL assays in sectioned embryos to demonstrate DNA fragmentation; 2) confocal microscopy in whole embryos stained with Lysotracker; 3) flow cytometry in dispersed heart cells stained for TUNEL and myosin heavy chain (MHC) to quantify and characterize cell type susceptibility; and 4) immunohistochemistry (IHC) and Western analysis in sectioned embryos to evaluate potential involvement of caspase-3 active subunit and p53. Effects on cell proliferation were evaluated by IHC and Western analysis of proliferating cell nuclear antigen (PCNA). RESULTS In vivo hypoglycemic exposure on E9.5 reduced viability in conceptuses examined on E18.5. Hearts examined on E10.5 demonstrated increased TUNEL and Lysotracker staining. In hearts of embryos exposed to hypoglycemia, flow cytometry demonstrated increased TUNEL-positive cells and cells dual-labeled for TUNEL and MHC. Protein expression of caspase-3 active subunit and p53 was increased and PCNA was markedly reduced in hearts of embryos exposed to hypoglycemia. CONCLUSIONS Hypoglycemia reduces embryonic viability, induces significant cell death, and reduces cell proliferation in the E9.5 mouse heart, and these processes may involve active caspase-3 and p53. Birth Defects Research (Part A), 2004. © 2004 Wiley-Liss, Inc. [source]


Support for the idea that light is a risk factor in optic neuropathies, like glaucoma

ACTA OPHTHALMOLOGICA, Issue 2007
NN OSBORNE
Purpose: Retinal ganglion cell (RGC) axons in the globe contain many mitochondria and it has been hypothesised that light can interact with these organelles to affect RGC survival in glaucoma. Studies on different cell-types were conducted to support such a proposition. Methods: Near confluent cultures of RGC-5 cells, primary rat retinal cultures, fibroblasts with normal (BJhTERT) or mitochondria depleted of mtDNA (rho0) were transferred to incubators containing light (400-760nm; 800-2000 lux; generally 2 days). Some of the cultures were covered with white paper to exclude the light. The cultures were then analysed for cell viability, generation of free radicals (ROS) and for death by apoptosis. Results: Oxidative status and mitochondrial dehydrogenase activity in retinal cultures (-40±5%), RGC-5 cells (-20±4%) and BJhTERT cells (-13±3%) was reduced significantly by light. Light reduced the number of GABA-positive neurones (-42±6%) in retinal cultures. Light caused a 3-5 fold increase in TUNEL-positive cells in primary retinal, RGC-5 and BJhTERT cultures, than in the dark. ROS staining was also clearly elevated by light. The light-induced toxic effect on the different cell types was significantly blunted by antioxidants like vitamin E and lipoic acid. Moreover, light-induced apoptosis was caspase independent but PARP dependent. In contrast, rho0 cells that lacked functional mitochondria were unaffected by light. Conclusions: The present study shows that light can directly affect mitochondrial function to induce apoptosis. This supports the view that light can interact with the many RGC axon mitochondria to affect the viability of GCs and that this may be of significance in the progression of glaucoma. [source]