Tundra Soils (tundra + soil)

Distribution by Scientific Domains


Selected Abstracts


The effects of chronic nitrogen fertilization on alpine tundra soil microbial communities: implications for carbon and nitrogen cycling

ENVIRONMENTAL MICROBIOLOGY, Issue 11 2008
Diana R. Nemergut
Summary Many studies have shown that changes in nitrogen (N) availability affect primary productivity in a variety of terrestrial systems, but less is known about the effects of the changing N cycle on soil organic matter (SOM) decomposition. We used a variety of techniques to examine the effects of chronic N amendments on SOM chemistry and microbial community structure and function in an alpine tundra soil. We collected surface soil (0,5 cm) samples from five control and five long-term N-amended plots established and maintained at the Niwot Ridge Long-term Ecological Research (LTER) site. Samples were bulked by treatment and all analyses were conducted on composite samples. The fungal community shifted in response to N amendments, with a decrease in the relative abundance of basidiomycetes. Bacterial community composition also shifted in the fertilized soil, with increases in the relative abundance of sequences related to the Bacteroidetes and Gemmatimonadetes, and decreases in the relative abundance of the Verrucomicrobia. We did not uncover any bacterial sequences that were closely related to known nitrifiers in either soil, but sequences related to archaeal nitrifiers were found in control soils. The ratio of fungi to bacteria did not change in the N-amended soils, but the ratio of archaea to bacteria dropped from 20% to less than 1% in the N-amended plots. Comparisons of aliphatic and aromatic carbon compounds, two broad categories of soil carbon compounds, revealed no between treatment differences. However, G-lignins were found in higher relative abundance in the fertilized soils, while proteins were detected in lower relative abundance. Finally, the activities of two soil enzymes involved in N cycling changed in response to chronic N amendments. These results suggest that chronic N fertilization induces significant shifts in soil carbon dynamics that correspond to shifts in microbial community structure and function. [source]


Characterisation of microbial community composition of a Siberian tundra soil by fluorescence in situ hybridisation

FEMS MICROBIOLOGY ECOLOGY, Issue 1 2004
Svenja Kobabe
Abstract The bacterial community composition of the active layer (0,45 cm) of a permafrost-affected tundra soil was analysed by fluorescence in situ hybridisation (FISH). Arctic tundra soils contain large amounts of organic carbon, accumulated in thick soil layers and are known as a major sink of atmospheric CO2. These soils are totally frozen throughout the year and only a thin active layer is unfrozen and shows biological activity during the short summer. To improve the understanding of how the carbon fluxes in the active layer are controlled, detailed analysis of composition, functionality and interaction of soil microorganisms was done. The FISH analyses of the active layer showed large variations in absolute cell numbers and in the composition of the active microbial community between the different horizons, which is caused by the different environmental conditions (e.g., soil temperature, amount of organic matter, aeration) in this vertically structured ecosystem. Universal protein stain 5-(4,6-dichlorotriazin-2-yl)aminofluorescein (DTAF) showed an exponential decrease of total cell counts from the top to the bottom of the active layer (2.3 × 109,1.2 × 108 cells per gram dry soil). Using FISH, up to 59% of the DTAF-detected cells could be detected in the surface horizon, and up to 84% of these FISH-detected cells could be affiliated to a known phylogenetic group. The amount of FISH-detectable cells decreased with increasing depth and so did the diversity of ascertained phylogenetic groups. [source]


Modelling carbon balances of coastal arctic tundra under changing climate

GLOBAL CHANGE BIOLOGY, Issue 1 2003
Robert F. Grant
Abstract Rising air temperatures are believed to be hastening heterotrophic respiration (Rh) in arctic tundra ecosystems, which could lead to substantial losses of soil carbon (C). In order to improve confidence in predicting the likelihood of such loss, the comprehensive ecosystem model ecosys was first tested with carbon dioxide (CO2) fluxes measured over a tundra soil in a growth chamber under various temperatures and soil-water contents (,). The model was then tested with CO2 and energy fluxes measured over a coastal arctic tundra near Barrow, Alaska, under a range of weather conditions during 1998,1999. A rise in growth chamber temperature from 7 to 15 °C caused large, but commensurate, rises in respiration and CO2 fixation, and so no significant effect on net CO2 exchange was modelled or measured. An increase in growth chamber , from field capacity to saturation caused substantial reductions in respiration but not in CO2 fixation, and so an increase in net CO2 exchange was modelled and measured. Long daylengths over the coastal tundra at Barrow caused an almost continuous C sink to be modelled and measured during most of July (2,4 g C m,2 d,1), but shortening daylengths and declining air temperatures caused a C source to be modelled and measured by early September (,1 g C m,2 d,1). At an annual time scale, the coastal tundra was modelled to be a small C sink (4 g C m,2 y,1) during 1998 when average air temperatures were 4 °C above normal, and a larger C sink (16 g C m,2 y,1) during 1999 when air temperatures were close to long-term normals. During 100 years under rising atmospheric CO2 concentration (Ca), air temperature and precipitation driven by the IS92a emissions scenario, modelled Rh rose commensurately with net primary productivity (NPP) under both current and elevated rates of atmospheric nitrogen (N) deposition, so that changes in soil C remained small. However, methane (CH4) emissions were predicted to rise substantially in coastal tundra with IS92a-driven climate change (from ,20 to ,40 g C m,2 y,1), causing a substantial increase in the emission of CO2 equivalents. If the rate of temperature increase hypothesized in the IS92a emissions scenario had been raised by 50%, substantial losses of soil C (,1 kg C m,2) would have been modelled after 100 years, including additional emissions of CH4. [source]


Soil microbial activity along an arctic-alpine altitudinal gradient from a seasonal perspective

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 5 2008
U. C. M. Löffler
Summary The knowledge on dynamics of soil microbial activity and its correlation to climate and vegetation is still poor but essential for predicting climatic changes scenarios. Seasonal dynamics of soil microbial activity and cell counts were studied along an arctic-alpine altitudinal gradient. The gradient comprised 12 ridges from 1000 to 1600 m altitude. Soil samples were collected during March, May, July and September 2005. The effect of temperature, snow depth and vegetation, all of which changed with altitude, on soil microbial activity and bacterial cell counts was analysed. The potential activities of phosphatase and chitinase were determined using fluorescent 4-methylumbelliferyl labelled analogues. Total and live bacterial cell counts were determined by live-dead-staining. We detected marked differences in soil microbial variables along the altitudinal gradient, forming three major clusters: a low alpine belt, a middle alpine belt, and an intermediate transition zone. Our results demonstrated that more frequent occurrence of shrubs and bryophytes would also increase microbial activity. Furthermore, we detected a clear relation (R2 = 0.6; P < 0.02) between high soil temperatures and greater soil microbial activity during summer. As higher temperatures are predicted to promote shrubs and higher humidity to promote bryophytes we expect microbial activity in dry heath tundra soils will increase with anticipated warmer, and in the case of Scandinavia, more humid climates. We did not find winter microbial activity to be less at snow-free sites than at sites covered by snow up to depths of 30 cm; hence, possible future decreases in snow depth will not result in reduced winter microbial activity. We demonstrate that shrubs support winter microbial activity not only by trapping snow but also directly by increasing the amount of organic carbon. [source]


Characterisation of microbial community composition of a Siberian tundra soil by fluorescence in situ hybridisation

FEMS MICROBIOLOGY ECOLOGY, Issue 1 2004
Svenja Kobabe
Abstract The bacterial community composition of the active layer (0,45 cm) of a permafrost-affected tundra soil was analysed by fluorescence in situ hybridisation (FISH). Arctic tundra soils contain large amounts of organic carbon, accumulated in thick soil layers and are known as a major sink of atmospheric CO2. These soils are totally frozen throughout the year and only a thin active layer is unfrozen and shows biological activity during the short summer. To improve the understanding of how the carbon fluxes in the active layer are controlled, detailed analysis of composition, functionality and interaction of soil microorganisms was done. The FISH analyses of the active layer showed large variations in absolute cell numbers and in the composition of the active microbial community between the different horizons, which is caused by the different environmental conditions (e.g., soil temperature, amount of organic matter, aeration) in this vertically structured ecosystem. Universal protein stain 5-(4,6-dichlorotriazin-2-yl)aminofluorescein (DTAF) showed an exponential decrease of total cell counts from the top to the bottom of the active layer (2.3 × 109,1.2 × 108 cells per gram dry soil). Using FISH, up to 59% of the DTAF-detected cells could be detected in the surface horizon, and up to 84% of these FISH-detected cells could be affiliated to a known phylogenetic group. The amount of FISH-detectable cells decreased with increasing depth and so did the diversity of ascertained phylogenetic groups. [source]


Seasonal variation in enzyme activities and temperature sensitivities in Arctic tundra soils

GLOBAL CHANGE BIOLOGY, Issue 7 2009
MATTHEW D. WALLENSTEIN
Abstract Arctic soils contain large amounts of organic matter due to very slow rates of detritus decomposition. The first step in decomposition results from the activity of extracellular enzymes produced by soil microbes. We hypothesized that potential enzyme activities are low relative to the large stocks of organic matter in Arctic tundra soils, and that enzyme activity is low at in situ temperatures. We measured the potential activity of six hydrolytic enzymes at 4 and 20 °C on four sampling dates in tussock, intertussock, shrub organic, and shrub mineral soils at Toolik Lake, Alaska. Potential activities of N -acetyl glucosaminidase, ,-glucosidase, and peptidase tended to be greatest at the end of winter, suggesting that microbes produced enzymes while soils were frozen. In general, enzyme activities did not increase during the Arctic summer, suggesting that enzyme production is N-limited during the period when temperatures would otherwise drive higher enzyme activity in situ. We also detected seasonal variations in the temperature sensitivity (Q10) of soil enzymes. In general, soil enzyme pools were more sensitive to temperature at the end of the winter than during the summer. We modeled potential in situ,-glucosidase activities for tussock and shrub organic soils based on measured enzyme activities, temperature sensitivities, and daily soil temperature data. Modeled in situ enzyme activity in tussock soils increased briefly during the spring, then declined through the summer. In shrub soils, modeled enzyme activities increased through the spring thaw into early August, and then declined through the late summer and into winter. Overall, temperature is the strongest factor driving low in situ enzyme activities in the Arctic. However, enzyme activity was low during the summer, possibly due to N-limitation of enzyme production, which would constrain enzyme activity during the brief period when temperatures would otherwise drive higher rates of decomposition. [source]


Cold adaptation in Arctic and Antarctic fungi

NEW PHYTOLOGIST, Issue 2 2001
Clare H. Robinson
Summary Growth and activity at low temperatures and possible physiological and ecological mechanisms underlying survival of fungi isolated from the cold Arctic and Antarctic are reviewed here. Physiological mechanisms conferring cold tolerance in fungi are complex; they include increases in intracellular trehalose and polyol concentrations and unsaturated membrane lipids as well as secretion of antifreeze proteins and enzymes active at low temperatures. A combination of these mechanisms is necessary for the psychrotroph or psychrophile to function. Ecological mechanisms for survival might include cold avoidance; fungal spores may germinate annually in spring and summer, so avoiding the coldest months. Whether spores survive over winter or are dispersed from elsewhere is unknown. There are also few data on persistence of basidiomycete vs microfungal mycelia and on the relationship between low temperatures and the predominance of sterile mycelia in tundra soils. Acclimation of mycelia is a physiological adaptation to subzero temperatures; however, the extent to which this occurs in the natural environment is unclear. Melanin in dark septate hyphae, which predominate in polar soils, could protect hyphae from extreme temperatures and play a significant role in their persistence from year to year. [source]


Stable isotope natural abundance of nitrous oxide emitted from Antarctic tundra soils: effects of sea animal excrement depositions

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 22 2008
Renbin Zhu
Nitrous oxide (N2O), a greenhouse gas, is mainly emitted from soils during the nitrification and denitrification processes. N2O stable isotope investigations can help to characterize the N2O sources and N2O production mechanisms. N2O isotope measurements have been conducted for different types of global terrestrial ecosystems. However, no isotopic data of N2O emitted from Antarctic tundra ecosystems have been reported although the coastal ice-free tundra around Antarctic continent is the largest sea animal colony on the global scale. Here, we report for the first time stable isotope composition of N2O emitted from Antarctic sea animal colonies (including penguin, seal and skua colonies) and normal tundra soils using insitu field observations and laboratory incubations, and we have analyzed the effects of sea animal excrement depositions on stable isotope natural abundance of N2O. For all the field sites, the soil-emitted N2O was 15N- and 18O-depleted compared with N2O in local ambient air. The mean , values of the soil-emitted N2O were ,15N,=,,13.5,±,3.2, and ,18O,=,26.2,±,1.4, for the penguin colony, ,15N,=,,11.5,±,5.1, and ,18O,=,26.4,±,3.5, for the skua colony and ,15N,=,,18.9,±,0.7, and ,18O,=,28.8,±,1.3, for the seal colony. In the soil incubations, the isotopic composition of N2O was measured under N2 and under ambient air conditions. The soils incubated under the ambient air emitted very little N2O (2.93,µg,N2ON,kg,1). Under N2 conditions, much more N2O was formed (9.74,µg,N2ON,kg,1), and the mean ,15N and ,18O values of N2O were ,19.1,±,8.0, and 21.3,±,4.3,, respectively, from penguin colony soils, and ,17.0,±,4.2, and 20.6,±,3.5,, respectively, from seal colony soils. The data from in situ field observations and laboratory experiments point to denitrification as the predominant N2O source from Antarctic sea animal colonies. Copyright © 2008 John Wiley & Sons, Ltd. [source]