Tumor Xenografts (tumor + xenograft)

Distribution by Scientific Domains
Distribution within Medical Sciences

Kinds of Tumor Xenografts

  • human tumor xenograft


  • Selected Abstracts


    Telomerase inhibition by stable RNA interference impairs tumor growth and angiogenesis in glioblastoma xenografts

    INTERNATIONAL JOURNAL OF CANCER, Issue 9 2006
    Roberto Pallini
    Abstract Telomerase is highly expressed in advanced stages of most cancers where it allows the clonal expansion of transformed cells by counteracting telomere erosion. Telomerase may also contribute to tumor progression through still undefined cell growth-promoting functions. Here, we inhibited telomerase activity in 2 human glioblastoma (GBM) cell lines, TB10 and U87MG, by targeting the catalytic subunit, hTERT, via stable RNA interference (RNAi). Although the reduction in telomerase activity had no effect on GBM cell growth in vitro, the development of tumors in subcutaneously and intracranially grafted nude mice was significantly inhibited by antitelomerase RNAi. The in vivo effect was observed within a relatively small number of population doublings, suggesting that telomerase inhibition may hinder cancer cell growth in vivo prior to a substantial shortening of telomere length. Tumor xenografts that arose from telomerase-inhibited GBM cells also showed a less-malignant phenotype due both to the absence of massive necrosis and to reduced angiogenesis. © 2005 Wiley-Liss, Inc. [source]


    PAMAM dendrimer-based contrast agents for MR imaging of Her-2/neu receptors by a three-step pretargeting approach

    MAGNETIC RESONANCE IN MEDICINE, Issue 4 2008
    Wenlian Zhu
    Abstract Pretargeting of receptors is a useful approach in molecular imaging and therapy to reduce background noise or toxicity and enhance selectivity. In this study a three-step pretargeting approach that includes a biotinylated antibody, avidin/streptavidin, and a biotinylated imaging agent is described. A PAMAM dendrimer generation 4 (G4D)-based MRI T1 agent biotin-G4D-DTPA-Gd (bG4D-Gd) and its sister compound with remaining free surface amine groups blocked by succinic anhydride to reduce positive charges (bG4D-Gd-SA) were synthesized. Limited selective enhancement in MRI was observed in a Her-2/neu mouse tumor xenograft by this three-step pretargeting approach that includes biotinylated trastuzumab, avidin and bG4D-Gd, or bG4D-Gd-SA. However, these dendrimer-based MRI agents with molecular weight around 29 kD reached and remained in the tumor through the enhanced permeability and retention effect. Prolonged and extensive accumulation of both bG4D-Gd and b-G4-Gd-SA in the kidneys was also observed. Magn Reson Med, 2008. © 2008 Wiley-Liss, Inc. [source]


    3D MR angiography of intratumoral vasculature using a novel macromolecular MR contrast agent

    MAGNETIC RESONANCE IN MEDICINE, Issue 3 2001
    Hisataka Kobayashi
    Abstract Noninvasive methods to visualize blood flow in the intratumoral vasculature have not previously been studied. In the present study, the use of a novel intravascular MR contrast agent with a generation-6 polyamidoamine dendrimer core (G6-(1B4M-Gd)192; MW: 175kD) was investigated, and the vasculature in experimental tumors was visualized using 3D MR angiography (MRA). Xenografted tumors in nude mice of two different histologies,KT005 (human osteogenic sarcoma) and LS180 (human colon carcinoma),were used to obtain 3D MRA using G6-(1B4M-Gd)192 and Gd-DTPA. The contrast MR sectional images were correlated with the corresponding histological sections. The intratumoral vasculature in the KT005 tumor was clearly visualized by 3D MRA, which became more evident with the growth of the tumor xenograft. In contrast, the intratumoral vasculature in the LS180 tumor was sparser and much less developed than that in KT005 tumors. Blood vessels with a diameter as small as 100 ,m based on histology were visualized using 0.033 mmol Gd/kg of G6-(1B4M-Gd)192. In conclusion, intratumoral vasculature with a 100-,m diameter was visualized better using 3D MRA with G6-(1B4M-Gd)192 than with Gd-DTPA. Magn Reson Med 46:579,585, 2001. © 2001 Wiley-Liss, Inc. [source]


    p53 cooperates berberine-induced growth inhibition and apoptosis of non-small cell human lung cancer cells in vitro and tumor xenograft growth in vivo

    MOLECULAR CARCINOGENESIS, Issue 1 2009
    Santosh K. Katiyar
    Abstract Berberine has been shown to have anti-carcinogenic effects. Since p53 is the most commonly mutated tumor suppressor gene, and a lack of functional p53 is associated with an increased risk of cancer development, we examined the effects of berberine on p53-positive and p53-deficient non-small cell human lung cancer cells in vitro and in vivo. Treatment of A549, which express wild-type p53, and H1299, which are p53-deficient, human lung cancer cells with berberine resulted in inhibition of cell proliferation and an increase in apoptotic cell death; however, A549 cells were more sensitive to the berberine-induced cytotoxic effects than H1299 cells. Further, the treatment of A549 cells with pifithrin-,, a specific inhibitor of p53, or transfection of A549 cells with a p53 antisense oligodeoxynucleotide resulted in a reduction in the berberine-induced inhibition of cell proliferation and apoptosis. The berberine-induced apoptosis of both the A549 and H1299 human lung cancer cells was associated with the disruption of mitochondrial membrane potential, reduction in the levels of Bcl-2, Bcl-xl while increase in Bax, Bak, and activation of caspase-3. Treatment of the cells with pan-caspase inhibitor (z-VAD-fmk) or caspase-3 inhibitor (z-DEVD-fmk) inhibited berberine-induced apoptosis, thus suggesting the role of caspase-3. Further, the administration of berberine by oral gavage inhibited the growth of s.c. A549 and H1299 lung tumor xenografts in athymic nude mice, however, the growth of tumor xenograft of H1299 cells was faster than A549 cells in mice and the chemotherapeutic effect of berberine was more pronounced in the p53-positive-A549 tumor xenograft than p53-deficient-H1299 tumor xenograft. © 2008 Wiley-Liss, Inc. [source]


    pH-Activated Near-Infrared Fluorescence Nanoprobe Imaging Tumors by Sensing the Acidic Microenvironment

    ADVANCED FUNCTIONAL MATERIALS, Issue 14 2010
    Cong Li
    Abstract Imaging tumors in their early stages is crucial to increase the surviving rate of cancer patients. Currently most fluorescence probes visualize the neoplasia by targeting the tumor-associated receptor over-expressed on the cancer cell membrane. However, the expression level of these receptors in vivo is hard to predict, which limits their clinical translation. Furthermore, the signal output of these receptor-targeting probes usually stays at a high level, which leads to a strong background signal in normal tissue due to non-specific binding. In contrast to receptors, characteristics of the tumor microenvironment , such as acidosis , are pervasive in almost all solid tumors and can be easily accessed. In this work, a novel biodegradable nanoprobe InNP1 that demonstrates pH-activated near-infrared (NIR) fluorescence in both human glioblastoma U87MG cancer cells in vitro and the subcutaneous U87MG tumor xenografts in vivo is developed. Bio-distribution, in vivo optical imaging, and autoradiography studies demonstrate that the pH-activated NIR fluorescence is the dominant factor responsible for the high tumor/normal tissue (T/N) ratio of InNP1 in vivo. Overall, the work provides a nanoprobe prototype to visualize the solid tumor in vivo with high sensitivity and minimal systemic toxicity by sensing the tumor acidic microenvironment. [source]


    Amphiregulin is a factor for resistance of glioma cells to cannabinoid-induced apoptosis

    GLIA, Issue 13 2009
    Mar Lorente
    Abstract Gliomas, one of the most malignant forms of cancer, exhibit high resistance to conventional therapies. Identification of the molecular mechanisms responsible for this resistance is therefore of great interest to improve the efficacy of the treatments against these tumors. ,9-Tetrahydrocannabinol (THC), the major active ingredient of marijuana, and other cannabinoids inhibit tumor growth in animal models of cancer, including glioma, an effect that relies, at least in part, on the ability of these compounds to induce apoptosis of tumor cells. By analyzing the gene expression profile of two sub-clones of C6 glioma cells with different sensitivity to cannabinoid-induced apoptosis, we found a subset of genes with a marked differential expression in the two sub-clones. Furthermore, we identified the epidermal growth factor receptor ligand amphiregulin as a candidate factor to mediate the resistance of glioma cells to cannabinoid treatment. Amphiregulin was highly overexpressed in the cannabinoid-resistant cell line, both in culture and in tumor xenografts. Moreover, in vivo silencing of amphiregulin rendered the resistant tumors xenografts sensitive to cannabinoid antitumoral action. Amphiregulin expression was associated with increased extracellular signal-regulated kinase (ERK) activation, which mediated the resistance to THC by blunting the expression of p8 and TRB3,two genes involved in cannabinoid-induced apoptosis of glioma cells. Our findings therefore identify Amphirregulin as a factor for resistance of glioma cells to THC-induced apoptosis and contribute to unraveling the molecular bases underlying the emerging notion that targeted inhibition of the EGFR pathway can improve the efficacy of antitumoral therapies. © 2009 Wiley-Liss, Inc. [source]


    Inhibition of poly adenosine diphosphate-ribose polymerase decreases hepatocellular carcinoma growth by modulation of tumor-related gene expression,

    HEPATOLOGY, Issue 1 2010
    Rosa Quiles-Perez
    Hepatocellular carcinoma (HCC) is associated with a poor prognosis due to a lack of effective treatment options. In HCC a significant role is played by DNA damage and the inflammatory response. Poly (ADP-ribose) polymerase-1 (PARP-1) is an important protein that regulates both these mechanisms. The objective of this study was to examine the effect of pharmacology PARP-1 inhibition on the reduction of tumor volume of HCC xenograft and on the hepatocarcinogenesis induced by diethyl-nitrosamine (DEN). Pharmacologic PARP-1 inhibition with DPQ greatly reduces tumor xenograft volume with regard to a nontreated xenograft (394 mm3 versus 2,942 mm3, P < 0.05). This observation was paralleled by reductions in xenograft mitosis (P = 0.02) and tumor vasculogenesis (P = 0.007, confirmed by in vitro angiogenesis study), as well as by an increase in the number of apoptotic cells in DPQ-treated mice (P = 0.04). A substantial difference in key tumor-related gene expression (transformed 3T3 cell double minute 2 [MDM2], FLT1 [vascular endothelial growth factor receptor-1, VEGFR1], epidermal growth factor receptor [EPAS1]/hypoxia-inducible factor 2 [HIF2A], EGLN1 [PHD2], epidermal growth factor receptor [EGFR], MYC, JUND, SPP1 [OPN], hepatocyte growth factor [HGF]) was found between the control tumor xenografts and the PARP inhibitor-treated xenografts (data confirmed in HCC cell lines using PARP inhibitors and PARP-1 small interfering RNA [siRNA]). Furthermore, the results obtained in mice treated with DEN to induce hepatocarcinogenesis showed, after treatment with a PARP inhibitor (DPQ), a significant reduction both in preneoplastic foci and in the expression of preneoplastic markers and proinflammatory genes (Gstm3, Vegf, Spp1 [Opn], IL6, IL1b, and Tnf), bromodeoxyuridine incorporation, and NF-,B activation in the initial steps of carcinogenesis (P < 0.05). Conclusion: This study shows that PARP inhibition is capable of controlling HCC growth and preventing tumor vasculogenesis by regulating the activation of different genes involved in tumor progression. (HEPATOLOGY 2010;51:255,266.) [source]


    Proteasome inhibition with bortezomib suppresses growth and induces apoptosis in osteosarcoma

    INTERNATIONAL JOURNAL OF CANCER, Issue 1 2010
    Yuriy Shapovalov
    Abstract Osteosarcomas are primary bone tumors of osteoblastic origin that mostly affect adolescent patients. These tumors are highly aggressive and metastatic. Previous reports indicate that gain of function of a key osteoblastic differentiation factor, Runx2, leads to growth inhibition in osteosarcoma. We have previously established that Runx2 transcriptionally regulates expression of a major proapoptotic factor, Bax. Runx2 is regulated via proteasomal degradation, and proteasome inhibition has a stimulatory effect on Runx2. In this study, we hypothesized that proteasome inhibition will induce Runx2 and Runx2-dependent Bax expression sensitizing osteosarcoma cells to apoptosis. Our data showed that a proteasome inhibitor, bortezomib, increased Runx2 and Bax in osteosarcoma cells. In vitro, bortezomib suppressed growth and induced apoptosis in osteosarcoma cells but not in nonmalignant osteoblasts. Experiments involving intratibial tumor xenografts in nude mice demonstrated significant tumor regression in bortezomib-treated animals. Immunohistochemical studies revealed that bortezomib inhibited cell proliferation and induced apoptosis in osteosarcoma xenografts. These effects correlated with increased immunoreactivity for Runx2 and Bax. In summary, our results indicate that bortezomib suppresses growth and induces apoptosis in osteosarcoma in vitro and in vivo suggesting that proteasome inhibition may be effective as an adjuvant to current treatment regimens for these tumors. Published 2009 UICC. This article is a US Government work and, as such, is in the public domain in the United States of America. [source]


    Sphingosine kinase 2 deficient tumor xenografts show impaired growth and fail to polarize macrophages towards an anti-inflammatory phenotype

    INTERNATIONAL JOURNAL OF CANCER, Issue 9 2009
    Andreas Weigert
    Abstract A challenging task of the immune system is to fight cancer cells. However, a variety of human cancers educate immune cells to become tumor supportive. This is exemplified for tumor-associated macrophages (TAMs), which are polarized towards an anti-inflammatory and cancer promoting phenotype. Mechanistic explanations, how cancer cells influence the macrophage phenotype are urgently needed to address potential anti-cancer strategies along this line. One potential immune modulating compound, sphingosine-1-phosphate (S1P), was recently highlighted in both tumor growth and immune modulation. Using a xenograft model in nude mice, we demonstrate a supportive role of sphingosine kinase 2 (SphK2), one of the S1P-producing enzymes for tumor progression. The growth of SphK2-deficient MCF-7 breast tumor xenografts was markedly delayed when compared with controls. Infiltration of macrophages in SphK2-deficient and control tumors was comparable. However, TAMs from SphK2-deficient tumors displayed a pronounced anti-tumor phenotype, showing an increased expression of pro-inflammatory markers/mediators such as NO, TNF-,, IL-12 and MHCII and a low expression of anti-inflammatory IL-10 and CD206. These data suggest a role for S1P, generated by SphK2, in early tumor development by affecting macrophage polarization. © 2009 UICC [source]


    Stromal MCP-1 in mammary tumors induces tumor-associated macrophage infiltration and contributes to tumor progression

    INTERNATIONAL JOURNAL OF CANCER, Issue 6 2009
    Hiroshi Fujimoto
    Abstract There is growing evidence that tumor-associated macrophages (TAMs) promote tumor growth and dissemination. Many individual reports have focused on the protumor function of molecules linked to the recruitment of macrophages, but little is known about which factor has the strongest impact on recruitment of macrophages in breast cancer. To elucidate this question, we performed RT-PCR using species-specific primers and evaluated tumoral and stromal mRNA expression of macrophage chemoattractants separately in human breast tumor xenografts. The correlation between the tumoral or stromal chemoattractant mRNA expression including monocyte chemoattractant protein-1 (MCP-1) (CCL2), MIP-1, (CCL3), RANTES (CCL5), colony-stimulating factor 1, tumor necrosis factor ,, platelet-derived growth factor (PDGF)-BB and macrophage infiltration were compared. There was significant positive correlation between stromal MCP-1 expression and macrophage number (r = 0.63), and negative correlation between tumoral RANTES expression and macrophage number (r = ,0.75). However, no significant correlation was found for the other tumoral and stromal factors. The interaction between the tumor cells and macrophages was also investigated. Tumor cell,macrophage interactions augmented macrophage-derived MCP-1 mRNA expression and macrophage chemotactic activity in vitro. Treatment of immunodeficient mice bearing human breast cancer cells with a neutralizing antibody to MCP-1 resulted in significant decrease of macrophage infiltration, angiogenetic activity and tumor growth. Furthermore, immunohistochemical analysis of human breast cancer tissue showed stromal MCP-1 had a significant correlation with relapse free survival (p = 0.029), but tumoral MCP-1 did not (p = 0.105). These findings indicate that stromal MCP-1 produced as a result of tumor,stromal interactions may be important for the progression of human breast cancer and macrophages may play an important role in this tumor,stroma interaction. © 2009 UICC. [source]


    IRC-083864, a novel bis quinone inhibitor of CDC25 phosphatases active against human cancer cells

    INTERNATIONAL JOURNAL OF CANCER, Issue 6 2009
    Marie-Christine Brezak
    Abstract CDC25 phosphatases are key actors in cyclin-dependent kinases activation whose role is essential at various stages of the cell cycle. CDC25 expression is upregulated in a number of human cancers. CDC25 phosphatases are therefore thought to represent promising novel targets in cancer therapy. Here, we report the identification and the characterization of IRC-083864, an original bis-quinone moiety that is a potent and selective inhibitor of CDC25 phosphatases in the low nanomolar range. IRC-083864 inhibits cell proliferation of a number of cell lines, regardless of their resistance to other drugs. It irreversibly inhibits cell proliferation and cell cycle progression and prevents entry into mitosis. In addition, it inhibits the growth of HCT-116 tumor spheroids with induction of p21 and apoptosis. Finally, IRC-083864 reduced tumor growth in mice with established human prostatic and pancreatic tumor xenografts. This study describes a novel compound, which merits further study as a potential anticancer agent. © 2008 Wiley-Liss, Inc. [source]


    Inhibition of telomerase in the endothelial cells disrupts tumor angiogenesis in glioblastoma xenografts

    INTERNATIONAL JOURNAL OF CANCER, Issue 6 2008
    Maria Laura Falchetti
    Abstract Tumor angiogenesis is a complex process that involves a series of interactions between tumor cells and endothelial cells (ECs). In vitro, glioblastoma multiforme (GBM) cells are known to induce an increase in proliferation, migration and tube formation by the ECs. We have previously shown that in human GBM specimens the proliferating ECs of the tumor vasculature express the catalytic component of telomerase, hTERT, and that telomerase can be upregulated in human ECs by exposing these cells to GBM in vitro. Here, we developed a controlled in vivo assay of tumor angiogenesis in which primary human umbilical vascular endothelial cells (HUVECs) were subcutaneously grafted with or without human GBM cells in immunocompromised mice as Matrigel implants. We found that primary HUVECs did not survive in Matrigel implants, and that telomerase upregulation had little effect on HUVEC survival. In the presence of GBM cells, however, the grafted HUVECs not only survived in Matrigel implants but developed tubule structures that integrated with murine microvessels. Telomerase upregulation in HUVECs enhanced such effect. More importantly, inhibition of telomerase in HUVECs completely abolished tubule formation and greatly reduced survival of these cells in the tumor xenografts. Our data demonstrate that telomerase upregulation by the ECs is a key requisite for GBM tumor angiogenesis. © 2007 Wiley-Liss, Inc. [source]


    Thermographic assessment of tumor growth in mouse xenografts

    INTERNATIONAL JOURNAL OF CANCER, Issue 5 2007
    Chengli Song
    Abstract In human breast tumors, a 1,2°C increase in skin surface temperature is usually observed at the periphery; it has been proposed that this change is due to the hypervascularity and increased blood flow resulting from tumor-associated angiogenesis. Here we tested the hypothesis that thermal imaging might represent a useful adjunctive technique in monitoring the growth dynamics of human tumor xenografts. Xenografts were established in immunocomprised nude mice using MDA-MB-231 or MCF7 breast cancer cells. We exploited the inherent noncontact and noninvasive advantages of infrared thermography to detect skin surface temperature changes. Continuous thermographic investigation was performed to detect and monitor tumor growth in vivo and high resolution digital images were analyzed to measure the tumor temperature dynamics. In contrast to the skin temperature increases associated with human breast cancer, a consistent temperature decrease was found in the xenograft mice. In one case, a smaller secondary tumor, otherwise undetectable, was clearly evident by thermal imaging. The tumors were cooler than the surrounding tissue with a maximum temperature reduction of 1.5°C for MDA-MB-231 tumor and 3°C for MCF7 tumors observed on day 14. In addition, the temperature of the xenograft tumors decreased progressively as they grew throughout the observation period. It was demonstrated that thermographic imaging could detect temperature changes as small as 0.1°C on the skin surface at an early stage of tumor development. The findings of the study indicate that thermographic imaging might have considerable potential in monitoring human tumor xenografts and their response to anticancer drugs. © 2007 Wiley-Liss, Inc. [source]


    Anti-tumor efficacy of the nucleoside analog 1-(2-deoxy-2-fluoro-4-thio-,-D-arabinofuranosyl) cytosine (4,-thio-FAC) in human pancreatic and ovarian tumor xenograft models

    INTERNATIONAL JOURNAL OF CANCER, Issue 6 2005
    Deborah A. Zajchowski
    Abstract 1-(2-Deoxy-2-fluoro-4-thio-,- D -arabinofuranosyl) cytosine (4,-thio-FAC) is a deoxycytidine analog that has been shown previously to have impressive anti-proliferative and cytotoxic effects in vitro and in vivo toward colorectal and gastric tumors. In our present studies, the pharmacokinetic behavior in nude mice and the effectiveness of 4,-thio-FAC against human pancreatic and ovarian tumor growth were assessed in comparison with standard chemotherapeutic agents. Potent in vitro anti-proliferative effects were observed against pancreatic (Capan-1, MIA-PaCa-2, BxPC-3) and ovarian (SK-OV-3, OVCAR-3, ES-2) cancer cell lines with IC50 of 0.01,0.2 ,M. In vivo anti-tumor activity was evaluated in nude mice bearing subcutaneously (s.c.) implanted human pancreatic tumor xenografts or intraperitoneally (i.p.) disseminated human ovarian xenografted tumors. Oral daily administration of 4,-thio-FAC for 8,10 days significantly inhibited the growth of gemcitabine-resistant BxPC-3 pancreatic tumors and induced regression of gemcitabine-refractory Capan-1 tumors. 4,-Thio-FAC was also a highly effective inhibitor of ovarian peritoneal carcinomatosis. In the SK-OV-3 and ES-2 ovarian cancer models, 4,-thio-FAC prolonged survival to a greater extent than that observed with gemcitabine. Furthermore, the superiority of 4,-thio-FAC to carboplatin and paclitaxel was demonstrated in the ES-2 clear cell ovarian carcinoma model. Studies provide evidence that 4,-thio-FAC is a promising new alternative to gemcitabine and other chemotherapeutic drugs in the treatment of a variety of tumor indications, including pancreatic and ovarian carcinoma. © 2004 Wiley-Liss, Inc. [source]


    Chronic administration of valproic acid inhibits PC3 cell growth by suppressing tumor angiogenesis in vivo

    INTERNATIONAL JOURNAL OF UROLOGY, Issue 9 2007
    Dexuan Gao
    Aim: Chromatin remodeling agents such as histone deacetylase inhibitors have been shown to modulate gene expression in tumor cells and inhibit tumor growth and angiogenesis. We investigated the mechanisms of chronic valproic acid (VPA) inhibiting PC3 cell growth in the study. Methods: We established tumor xenografts of the PC3 cell line and investigated the effect of VPA chronic administration on tumor growth. Apoptosis in tumor tissue was measured using the TUNEL Detection Kit. We detected the effect of VPA chronic administration on histone acetylation; p21CIP1/WAF1 gene expression; vascular endothelial growth factor (VEGF) expression by reverse-transcription Polymerase Chain Reaction (PCR) analysis; immunohistochemistry; and Western Blotting. Result: In mouse models with established subcutaneous prostate (PC3), VPA treatment induced 70% inhibition of tumor growth without overt toxicity. Our result showed that chronic administration of VPA has an effect on tumor growth arrest and the effect was associated with increased histone acetylation, p21CIP1/WAF1 up-regulation, and VEGF down-regulation. Conclusion: We conclude that chronic VPA results in profound decreases in the proliferation of PC3 cells, not only by increasing histone H3 acetylation and up-regulating p21CIP1/WAF1 expression, but also by down-regulating VEGF. [source]


    Synchrotron X-ray imaging reveals a correlation of tumor copper speciation with Clioquinol's anticancer activity

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2009
    Raul A. Barrea
    Abstract Tumor development and metastasis depend on angiogenesis that requires certain growth factors, proteases, and the trace element copper (Cu). Recent studies suggest that Cu could be used as a novel target for cancer therapies. Clioquinol (CQ), an antibiotic that is able to form stable complexes with Cu or zinc (Zn), has shown proteasome-inhibitory, androgen receptor-suppressing, apoptosis-inducing, and antitumor activities in human cancer cells and xenografts. The mechanisms underlying the interaction of CQ with cellular Cu, the alteration of the Cu/Zn ratio and the antitumor role of CQ in vivo have not been fully elucidated. We report here that Cu accumulates in tumor tissue and that the Cu/Zn balances in tumor, but not normal, tissue change significantly after the treatment with CQ. Cu speciation analysis showed that the Cu(I) species is predominant in both normal and tumor tissues and that Cu(II) content was significantly increased in tumor, but not normal tissue after CQ treatment. Our findings indicate that CQ can interact with cellular Cu in vivo, dysregulates the Cu/Zn balance and is able to convert Cu(I) to Cu(II) in tumor tissue. This conversion of Cu(I) to Cu(II) may be associated with CQ-induced proteasome inhibition and growth suppression in the human prostate tumor xenografts. J. Cell. Biochem. 108: 96,105, 2009. © 2009 Wiley-Liss, Inc. [source]


    Diffusion-weighted MRI for monitoring tumor response to photodynamic therapy

    JOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 2 2010
    Hesheng Wang MS
    Abstract Purpose: To examine diffusion-weighted MRI (DW-MRI) for assessing the early tumor response to photodynamic therapy (PDT). Materials and Methods: Subcutaneous tumor xenografts of human prostate cancer cells (CWR22) were initiated in athymic nude mice. A second-generation photosensitizer, Pc 4, was delivered to each animal by a tail vein injection 48 h before laser illumination. A dedicated high-field (9.4 Tesla) small animal MR scanner was used to acquire diffusion-weighted MR images pre-PDT and 24 h after the treatment. DW-MRI and apparent diffusion coefficients (ADC) were analyzed for 24 treated and 5 control mice with photosensitizer only or laser light only. Tumor size, prostate specific antigen (PSA) level, and tumor histology were obtained at different time points to examine the treatment effect. Results: Treated mice showed significant tumor size shrinkage and decrease of PSA level within 7 days after the treatment. The average ADC of the 24 treated tumors increased 24 h after PDT (P < 0.001) comparing with pre-PDT. The average ADC was 0.511 ± 0.119 × 10,3 mm2/s pre-PDT and 0.754 ± 0.181 × 10,3 mm2/s 24 h after the PDT. There is no significant difference in ADC values pre-PDT and 24 h after PDT in the control tumors (P = 0.20). Conclusion: The change of tumor ADC values measured by DW-MRI may provide a noninvasive imaging marker for monitoring tumor response to Pc 4-PDT as early as 24 h. J. Magn. Reson. Imaging 2010;32:409,417. © 2010 Wiley-Liss, Inc. [source]


    Dielectric cell separation of fine needle aspirates from tumor xenografts

    JOURNAL OF SEPARATION SCIENCE, JSS, Issue 21 2008
    Massimo Cristofanilli
    Abstract As an approach to isolating tumor cells from fine needle biopsy specimens, we investigated a dielectric cell preparation method using an in vivo xenographic tumor model. Cultured human MDA-MB-435 tumor cells were grown as solid tumors in nude mice and fine needle aspiration biopsies were conducted. Biopsied cells were suspended in sucrose medium and collected on slides patterned with microelectrode arrays (electrosmears) energized by electrical signals in the range 10 to 960 kHz. The unlabeled cells adhered to characteristic regions of the slides in accordance with their morphology as a result of dielectric forces. Tumor cells were trapped between 40 and 60 kHz and were separated according to whether they were mitotic, large and complex, or small. Damaged tumor cells were captured at between 60 and 120 kHz; granulocytes between 70 and 90 kHz; lymphocytes between 85 and 105 kHz; healthy erythrocytes between 140 and 180 kHz, and damaged erythrocytes above 180 kHz. Using intrinsic cell characteristics, the electrosmear presented cell subpopulations from fine needle aspiration biopsy specimens in a manner that is compatible with automated slide-based analysis systems. The approach has the potential to facilitate the analysis of the role of cell subpopulations in disease. [source]


    p53 cooperates berberine-induced growth inhibition and apoptosis of non-small cell human lung cancer cells in vitro and tumor xenograft growth in vivo

    MOLECULAR CARCINOGENESIS, Issue 1 2009
    Santosh K. Katiyar
    Abstract Berberine has been shown to have anti-carcinogenic effects. Since p53 is the most commonly mutated tumor suppressor gene, and a lack of functional p53 is associated with an increased risk of cancer development, we examined the effects of berberine on p53-positive and p53-deficient non-small cell human lung cancer cells in vitro and in vivo. Treatment of A549, which express wild-type p53, and H1299, which are p53-deficient, human lung cancer cells with berberine resulted in inhibition of cell proliferation and an increase in apoptotic cell death; however, A549 cells were more sensitive to the berberine-induced cytotoxic effects than H1299 cells. Further, the treatment of A549 cells with pifithrin-,, a specific inhibitor of p53, or transfection of A549 cells with a p53 antisense oligodeoxynucleotide resulted in a reduction in the berberine-induced inhibition of cell proliferation and apoptosis. The berberine-induced apoptosis of both the A549 and H1299 human lung cancer cells was associated with the disruption of mitochondrial membrane potential, reduction in the levels of Bcl-2, Bcl-xl while increase in Bax, Bak, and activation of caspase-3. Treatment of the cells with pan-caspase inhibitor (z-VAD-fmk) or caspase-3 inhibitor (z-DEVD-fmk) inhibited berberine-induced apoptosis, thus suggesting the role of caspase-3. Further, the administration of berberine by oral gavage inhibited the growth of s.c. A549 and H1299 lung tumor xenografts in athymic nude mice, however, the growth of tumor xenograft of H1299 cells was faster than A549 cells in mice and the chemotherapeutic effect of berberine was more pronounced in the p53-positive-A549 tumor xenograft than p53-deficient-H1299 tumor xenograft. © 2008 Wiley-Liss, Inc. [source]


    Initial testing of the aurora kinase a inhibitor MLN8237 by the Pediatric Preclinical Testing Program (PPTP),

    PEDIATRIC BLOOD & CANCER, Issue 1 2010
    John M. Maris MD
    Abstract Background MLN8237 is a small molecule inhibitor of Aurora Kinase A (AURKA) that is currently in early phase clinical testing. AURKA plays a pivotal role in centrosome maturation and spindle formation during mitosis. Procedures MLN8237 was tested against the Pediatric Preclinical Testing Program (PPTP) in vitro panel at concentrations ranging from 1.0,nM to 10,µM and was tested against the PPTP in vivo panels at a dose of 20,mg/kg administered orally twice daily,×,5 days. Treatment duration was 6 weeks for solid tumor xenografts and 3 weeks for ALL xenografts. Results MLN8237 had a median IC50 of 61,nM against the PPTP in vitro panel. The ALL cell lines were more sensitive and the rhabdomyosarcoma cell lines less sensitive than the remaining PPTP cell lines. In vivo, MLN8237 induced significant differences in event-free survival (EFS) distributions compared to controls in 32/40 (80%) solid tumor models and all (6/6) ALL models. Maintained complete responses (CRs) were observed in 3 of 7 neuroblastoma xenografts, and all 6 evaluable ALL xenografts achieved CR (n,=,4) or maintained CR (n,=,2) status. Maintained CRs were observed among single xenografts in other panels, including the Wilms tumor, rhabdoid tumor, rhabdomyosarcoma, Ewing sarcoma, osteosarcoma, and medulloblastoma. Conclusions The in vivo activity observed against the neuroblastoma panel far exceeds that observed for standard agents evaluated against the panel by the PPTP. High levels of in vivo activity were also observed against the ALL xenograft panel. These data support expedited clinical development of MLN8237 in childhood cancer. Pediatr Blood Cancer 2010;55:26,34. © 2010 Wiley-Liss, Inc. [source]


    Initial testing of topotecan by the pediatric preclinical testing program,

    PEDIATRIC BLOOD & CANCER, Issue 5 2010
    Hernan Carol PhD
    Abstract Background Topotecan is a small molecule DNA topoisomerase I poison, that has been successful in clinical trials against pediatric solid tumors and leukemias. Topotecan was evaluated against the Pediatric Preclinical Testing Program (PPTP) tumor panels as part of a validation process for these preclinical models. Procedures In vivo three measures of antitumor activity were used: (1) an objective response measure modeled after the clinical setting; (2) a treated to control (T/C) tumor volume measure; and (3) a time to event (fourfold increase in tumor volume for solid tumor models, or ,25% human CD45+ cells in the peripheral blood for acute lymphoblastic leukemia, ALL models) measure based on the median event-free survival (EFS) of treated and control animals for each xenograft. Results Topotecan inhibited cell growth in vitro with IC50 values between 0.71 and 489,nM. Topotecan significantly increased EFS in 32 of 37 (87%) solid tumor xenografts and in all 8 of the ALL xenografts. Seventy-five percent of solid tumors met EFS T/C activity criteria for intermediate (n,=,17) or high activity (n,=,7). Objective responses were noted in eight solid tumor xenografts (Wilms, rhabdomyosarcoma, Ewing sarcoma, neuroblastoma). Among the six neuroblastomas, three achieved a PR. For the ALL panel, two maintained CRs, three CRs, and two PRs were observed. Conclusions Topotecan demonstrated broad activity in vitro and in vivo against both the solid tumor and ALL panels, with significant tumor growth delay generated in all the panels. These results further demonstrate the validity of the PPTP panel for preclinical testing of new drugs. Pediatr Blood Cancer 2010;54:707,715. © 2009 Wiley-Liss, Inc. [source]


    BI-69A11-mediated inhibition of AKT leads to effective regression of xenograft melanoma

    PIGMENT CELL & MELANOMA RESEARCH, Issue 2 2009
    Supriya Gaitonde
    Summary The AKT/PKB pathway plays a central role in tumor development and progression and is often up-regulated in different tumor types, including melanomas. We have recently reported on the in silico approach to identify putative inhibitors for AKT/PKB. Of the reported hits, we selected BI-69A11, a compound which was shown to inhibit AKT activity in in vitro kinase assays. Analysis of BI-69A11 was performed in melanoma cells, a tumor type that commonly exhibits up-regulation of AKT. Treatment of the UACC903 human melanoma cells, harboring the PTEN mutation, with BI-69A11 caused efficient inhibition of AKT S473 phosphorylation with concomitant inhibition of AKT phosphorylation of PRAS40. Treatment of melanoma cells with BI-69A11 also reduced AKT protein expression, which coincided with inhibition of AKT association with HSP-90. BI-69A11 treatment not only caused cell death of melanoma, but also prostate tumor cell lines. Notably, the effect of BI-69A11 on cell death was more pronounced in cells that express an active form of AKT. Significantly, intra-peritoneal injection of BI-69A11 caused effective regression of melanoma tumor xenografts, which coincided with elevated levels of cell death. These findings identify BI-69A11 as a potent inhibitor of AKT that is capable of eliciting effective regression of xenograft melanoma tumors. [source]


    The prostatic environment suppresses growth of androgen-independent prostate cancer xenografts: An effect influenced by testosterone

    THE PROSTATE, Issue 11 2009
    Karin Jennbacken
    Abstract BACKGROUND Interactions between prostate cancer cells and their surrounding stroma play an important role in the growth and maintenance of prostate tumors. To elucidate this further, we investigated how growth of androgen-dependent (AD) LNCaP and androgen-independent (AI) LNCaP-19 prostate tumors was affected by different microenvironments and androgen levels. METHODS Tumor cells were implanted subcutaneously and orthotopically in intact and castrated immunodeficient mice. Orthotopic tumor growth was followed by magnetic resonance imaging (MRI). Gene expression in the tumors was evaluated by means of microarray analysis and microvessel density (MVD) was analyzed using immunohistochemistry. RESULTS The results showed that LNCaP-19 tumors grew more rapidly at the subcutaneous site than in the prostate, where tumors were obviously inhibited. Castration of the mice did not affect ectopic tumors but did result in increased tumor growth in the prostatic environment. This effect was reversed by testosterone treatment. In contrast to LNCaP-19, the LNCaP cells grew rapidly in the prostate and castration reduced tumor development. Gene expression analysis of LNCaP-19 tumors revealed an upregulation of genes, inhibiting tumor growth (including ADAMTS1, RGS2 and protocadherin 20) and a downregulation of genes, promoting cell adhesion and metastasis (including N-cadherin and NRCAM) in the slow-growing orthotopic tumors from intact mice. CONCLUSIONS The results show that the prostatic environment has a varying impact on AD and AI tumor xenografts. Data indicate that the androgen-stimulated prostatic environment limits growth of orthotopic AI tumors through induction of genes that inhibit tumor growth and suppression of genes that promote cell adhesion and metastasis. Prostate 69:1164,1175, 2009. © 2009 Wiley-Liss, Inc. [source]


    The antitumor activity of NK012, an SN-38,incorporating micelle, in combination with bevacizumab against lung cancer xenografts

    CANCER, Issue 19 2010
    Hirotsugu Kenmotsu MD
    Abstract BACKGROUND: It has been demonstrated that NK012, a novel 7-ethyl-10-hydroxycamptothecin (SN-38)-incorporating polymeric micelle, exerts significantly more potent antitumor activity against various human tumor xenografts than irinotecan (CPT-11) (a water-soluble prodrug of SN-38). Combination therapy of anticancer agents with bevacizumab (Bv), an anti-vascualr endothelial growth factor humanized monoclonal antibody, has more potently inhibited tumor growth than either agent alone. In the current study, the authors examined the antitumor effect of NK012 in combination with Bv against human lung cancer. METHODS: Nude mice bearing lung adenocarcinoma (PC-14 or A549 xenografts) were administered NK012 at SN-38-equivalent doses of 5 mg/kg or 30 mg/kg in combination with or without Bv at 5 mg/kg. CPT-11 at a dose of 66.7 mg/kg was administered with or without Bv at a dose of 5 mg/kg in the same experimental model. To evaluate interaction with Bv, the pharmacokinetics and microvessel density in tumors that were treated on each regimen were analyzed. RESULT: In vitro, the growth-inhibitory effect of NK012 was 50-fold more potent than that of CPT-11 and was almost equivalent to that of SN-38. In vivo studies revealed that the combination of NK012 plus Bv had significantly greater antitumor activity against human lung cancer xenografts compared with NK012 alone (PC-14, P = .0261; A549, P < .001). The pharmacokinetic profile of NK012 revealed that coadministration of Bv did not interfere with the accumulation of NK012. CONCLUSIONS: In this study, significant antitumor activity was noted with NK012 in combination with Bv against lung cancer cells. The current results warrant the clinical evaluation of NK012 in lung cancer. Cancer 2010. © 2010 American Cancer Society. [source]


    Amrubicin, a novel 9-aminoanthracycline, enhances the antitumor activity of chemotherapeutic agents against human cancer cells in vitro and in vivo

    CANCER SCIENCE, Issue 3 2007
    Mitsuharu Hanada
    Amrubicin, a completely synthetic 9-aminoanthracycline derivative, is an active agent in the treatment of untreated extensive disease-small-cell lung cancer and advanced non-small-cell lung cancer. Amrubicin administered intravenously at 25 mg/kg substantially prevented the growth of five of six human lung cancer xenografts established in athymic nude mice, confirming that amrubicin as a single agent was active in human lung tumors. To survey which antitumor agent available for clinical use produces a synergistic interaction with amrubicin, we examined the effects in combinations with amrubicinol, an active metabolite of amrubicin, of several chemotherapeutic agents in vitro using five human cancer cell lines using the combination index (CI) method of Chou and Talalay. Synergistic effects were obtained on the simultaneous use of amrubicinol with cisplatin, irinotecan, gefitinib and trastuzumab, with CI values after 3 days of exposure being <1. Additive effect was observed with the combination containing vinorelbine with CI values indistinguishable from 1, while the combination of amrubicinol with gemcitabine was antagonistic. All combinations tested in vivo were well tolerated. The combinations of cisplatin, irinotecan, vinorelbine, trastuzumab, tegafur/uracil, and to a lesser extent, gemcitabine with amrubicin caused significant growth inhibition of human tumor xenografts without pronouncedly enhancing body weight loss, compared with treatment using amrubicin alone at the maximum tolerated dose. Growth inhibition of tumors by gefitinib was not antagonized by amrubicin. These results suggest that amrubicin appears to be a possible candidate for combined use with cisplatin, irinotecan, vinorelbine, gemcitabine, tegafur/uracil or trastuzumab. (Cancer Sci 2007; 98: 447,454) [source]


    Anticancer effects of ZD6474, a VEGF receptor tyrosine kinase inhibitor, in gefitinib ("Iressa")-sensitive and resistant xenograft models

    CANCER SCIENCE, Issue 12 2004
    Fumiko Taguchi
    ZD6474 is a novel, orally available inhibitor of vascular endothelial growth factor (VEGF) receptor-2 (KDR) tyrosine kinase, with additional activity against epidermal growth factor receptor (EGFR) tyrosine kinase. ZD6474 has been shown to inhibit angiogenesis and tumor growth in a range of tumor models. Gefitinib ("Iressa") is an selective EGFR tyrosine kinase inhibitor (TKI) that blocks signal transduction pathways. We examined the antitumor activity of ZD6474 in the gefitinib-sensitive lung adenocarcinoma cell line, PC-9, and a gefitinib-resistant variant (PC-9/ZD). PC-9/ZD cells showed cross-resistance to ZD6474 in an in vitro dye formation assay. In addition, ZD6474 showed dose-dependent inhibition of EGFR phosphorylation in PC-9 cells, but inhibition was only partial in PC-9/ZD cells. ZD6474-mediated inhibition of tyrosine residue phosphorylation (Tyr992 and Tyr1045) on EGFR was greater in PC-9 cells than in PC-9/ZD cells. These findings suggest that the inhibition of EGFR phosphorylation by ZD6474 can contribute a significant, direct growth-inhibitory effect in tumor cell lines dependent on EGFR signaling for growth and/or survival. The effect of ZD6474 (12.5,50 mg/kg/day p.o. for 21 days) on the growth of PC-9 and PC-9/ZD tumor xenografts in athymic mice was also investigated. The greatest effect was seen in gefitinib-sensitive PC-9 tumors, where ZD6474 treatment (>12.5 mg/kg/day) resulted in tumor regression. Dose-dependent growth inhibition, but not tumor regression, was seen in ZD6474-treated PC-9/ZD tumors. These studies demonstrate that the additional EGFR TKI activity may contribute significantly to the anti-tumor efficacy of ZD6474, in particular in those tumors that are dependent on continued EGFR-signaling for proliferation or survival. In addition, these results provide a preclinical rationale for further investigation of ZD6474 as a potential treatment option for both EGFR-TKI-sensitive and EGFR-TKI-resistant tumors. [source]


    Monoclonal antibodies as effective therapeutic agents for solid tumors

    CANCER SCIENCE, Issue 8 2004
    Yuji Hinoda
    Monoclonal antibodies (mAbs) against growth factors or their receptors have been revealed to be effective therapeutic agents for solid tumors. Trastuzumab (humanized anti-HER2 mAb) is the first mAb approved for the treatment of a solid tumor, metastatic breast cancer. Large-scale phase III clinical trials are now ongoing to further evaluate the additive effects on chemotherapy and the efficacy as a maintenance monotherapy. Another anti-HER2 mAb CH401 that we developed also seems to have good potential. This chimeric mAb completely suppressed the growth of established human tumor xenografts in SCID mice after a single injection. Furthermore, CH401 characteristically showed much stronger induction of apoptosis in HER2-overexpressing gastric cancer cells compared to trastuzumab. Additional targets now being intensively evaluated are epidermal growth factor receptor (EGFR) and vascular endothelial growth factor (VEGF). Both cetuximab (chimeric anti-EGFR mAb) and bevacizumab (humanized anti-VEGF mAb) have recently been shown to be of clinical value for metastatic colorectal cancer. Anti-idiotype mAbs are unique as active immunotherapeutic agents, and survival benefits have been observed in clinical trials for solid tumors. [source]


    Combination effect of AC-7700, a novel combretastatin A-4 derivative, and cisplatin against murine and human tumors in vivo

    CANCER SCIENCE, Issue 2 2003
    Yoshihiro Morinaga
    The in vivo combination effect of AC-7700, a novel combretastatin A-4 derivative, and cisplatin (CDDP) was examined. The combination of AC-7700 and CDDP increased antitumor activity against murine colon 26 tumor in mice and cured the mice. This combination effect was found over wide dosage ranges of AC-7700 (20,80 mg/kg) and CDDP (2.5,5 mg/kg). Moreover, this combination augmented antitumor activity against murine S180 and M109 tumors, and human LX-1 and LS180 tumor xenografts in mice. The effect was the strongest when AC-7700 and CDDP were administered simultaneously. To study this combination effect we measured the concentrations of CDDP in tumors, plasma and kidneys of the mice with colon 26 tumor. In the combination with AC-7700, the concentration of CDDP in the tumors increased from 0.5 to 96 h after administration, but did not change or decrease in plasma or kidneys. Against human LS180 xenografts in mice, the combination similarly increased the concentration of CDDP in the tumors. These results suggest that AC-7700 may specifically augment the accumulation of CDDP in tumors, and thus has the potential to be useful in combination chemotherapy with CDDP. (Cancer Sci 2003; 94: 200,204) [source]


    A novel carbazole topoisomerase II poison, ER-37328: potent tumoricidal activity against human solid tumors in vitro and in vivo

    CANCER SCIENCE, Issue 1 2003
    Katsuji Nakamura
    We have discovered a novel topoisomerase II (topo II) poison, ER-37328 (12,13-dihydro-5-[2-(dimethylamino)ethyl]-4H-benzo[c]py-rimido[5,6,1- jk]carbazole-4,6,10(5H, 11H)-trione hydrochloride), which shows potent tumor regression activity against Colon 38 cancer inoculated s.c. Here, we describe studies on the cell-killing activity against a panel of human cancer cell lines and the antitumor activity of ER-37328 against human tumor xenografts. In a cell-killing assay involving 1-h drug treatment, ER-37328 showed more potent cell-killing activity (50% lethal concentrations (LC50s) ranging from 2.9 to 20 ,M) than etoposide (LC50s>60 ,M) against a panel of human cancer cell lines. ER-37328 induced double-stranded DNA cleavage, an indicator of topo II-DNA cleavable complex formation, within 1 h in MX-1 cells, and the extent of cleavage showed a bell-shaped relationship to drug concentration, with the maximum at 2.5 ,M. After removal of the drug (2.5 ,M) at 1 h, incubation was continued in drug-free medium, and the amount of cleaved DNA decreased. However, at 10 ,M, which is close to the LC50 against MX-1 cells, DNA cleavage was not detected immediately after 1-h treatment, but appeared and increased after drug removal. This result may explain the potent cell-killing activity of ER37328 in the 1-h treatment. In vivo, ER-37328 showed potent tumor regression activity against MX-1 and NS-3 tumors. Moreover, ER-37328 had a different antitumor spectrum from irinotecan or cisplatin against human tumor xenografts. In conclusion, ER-37328 is a promising topo II poison with strong cell killing activity in vitro and tumor regression activity in vivo, and is a candidate for the clinical treatment of malignant solid tumors. (Cancer Sci 2003; 94: 119,124) [source]