Tumor Syndrome (tumor + syndrome)

Distribution by Scientific Domains

Kinds of Tumor Syndrome

  • familial tumor syndrome


  • Selected Abstracts


    Somatic loss of wild type NF1 allele in neurofibromas: Comparison of NF1 microdeletion and non-microdeletion patients

    GENES, CHROMOSOMES AND CANCER, Issue 10 2006
    Thomas De Raedt
    Neurofibromatosis type I (NF1) is an autosomal dominant familial tumor syndrome characterized by the presence of multiple benign neurofibromas. In 95% of NF1 individuals, a mutation is found in the NF1 gene, and in 5% of the patients, the germline mutation consists of a microdeletion that includes the NF1 gene and several flanking genes. We studied the frequency of loss of heterozygosity (LOH) in the NF1 region as a mechanism of somatic NF1 inactivation in neurofibromas from NF1 patients with and without a microdeletion. There was a statistically significant difference between these two patient groups in the proportion of neurofibromas with LOH. None of the 40 neurofibromas from six different NF1 microdeletion patients showed LOH, whereas LOH was observed in 6/28 neurofibromas from five patients with an intragenic NF1 mutation (P = 0.0034, Fisher's exact). LOH of the NF1 microdeletion region in NF1 microdeletion patients would de facto lead to a nullizygous state of the genes located in the deletion region and might be lethal. The mechanisms leading to LOH were further analyzed in six neurofibromas. In two out of six neurofibromas, a chromosomal microdeletion was found; in three, a mitotic recombination was responsible for the observed LOH; and in one, a chromosome loss with reduplication was present. These data show an important difference in the mechanisms of second hit formation in the 2 NF1 patient groups. We conclude that NF1 is a familial tumor syndrome in which the type of germline mutation influences the type of second hit in the tumors. © 2006 Wiley-Liss, Inc. [source]


    Pathogenesis of multifocal micronodular pneumocyte hyperplasia and lymphangioleiomyomatosis in tuberous sclerosis and association with tuberous sclerosis genes TSC1 and TSC2

    PATHOLOGY INTERNATIONAL, Issue 8 2001
    Hiroshi Maruyama
    Tuberous sclerosis (TSC) is a rare, genetically determined disorder / familial tumor syndrome, currently diagnosed using specific clinical criteria proposed by Gomez, including the presence of multiorgan hamartomas. Pulmonary involvement in TSC is well known as pulmonary lymphangioleiomyomatosis (LAM), which has an incidence of 1,2.3% in TSC patients. LAM has immunohistochemical expression of both smooth-muscle actin and a monoclonal antibody specific for human melanoma, HMB-45. It has recently been reported that multifocal micronodular pneumocyte hyperplasia (MMPH) associated with TSC should be considered as a distinct type of lung lesion, whether it occurs with or without LAM. Two predisposing genes have been found in families affected by TSC; approximately half of the families show linkage to TSC1 at 9q34.3, and the other half show linkage to TSC2 at 16p13.3. TSC genes are considered to be tumor suppressor genes, and mutations in them may lead to abnormal differentiation and proliferation of cells. Tuberin, the TSC2 gene product, has recently been found to be expressed in LAM and MMPH. In this article we discuss the histogenesis and genetic abnormalities of neoplastic lesions associated with TSC, and we review the current understanding of the pathogenesis of pulmonary hamartomatous lesions such as LAM and MMPH in TSC. [source]


    Pathological and molecular biological aspects of the renal epithelial neoplasms, up-to-date

    PATHOLOGY INTERNATIONAL, Issue 6 2004
    Yoji Nagashima
    Renal neoplasms are not necessarily high in frequency, but they are characteristic in their heterogeneity and occasional association with systemic familial tumor syndromes and phacomatoses (e.g. clear cell renal cell carcinoma and von Hippel-Lindau disease, Wilms tumor and aniridia, genitourinary malformation and mental retardation (so-called, WAGR syndrome), and angiomyolipoma and tuberous sclerosis). Physicians and pathologists should take note of these syndromes and associated renal neoplasms because they have provided important clues to elucidate the mechanism of tumorigenesis concerning cancer-suppressor genes. This review aims to present recent classification of renal parenchymal neoplasms based on their molecular biological characteristics, and future problems yet to be clarified. [source]


    Inherited pancreatic endocrine tumor syndromes: Advances in molecular pathogenesis, diagnosis, management, and controversies,

    CANCER, Issue S7 2008
    Robert T. Jensen MD
    Abstract Pancreatic endocrine tumors (PETs) can occur as part of 4 inherited disorders, including Multiple Endocrine Neoplasia type 1 (MEN1), von Hippel-Lindau disease (VHL), neurofibromatosis 1 (NF-1) (von Recklinghausen disease), and the tuberous sclerosis complex (TSC). The relative frequency with which patients who have these disorders develop PETs is MEN1>VHL>NF-1>TSC. Over the last few years, there have been major advances in the understanding of the genetics and molecular pathogenesis of these disorders as well in the localization and the medical and surgical treatment of PETs in such patients. The study of PETs in these disorders not only has provided insights into the possible pathogenesis of sporadic PETs but also has presented several unique management and treatment issues, some of which are applicable to patients with sporadic PETs. Therefore, the study of PETs in these uncommon disorders has provided valuable insights that, in many cases, are applicable to the general group of patients with sporadic PETs. In this article, these areas are reviewed briefly along with the current state of knowledge of the PETs in these disorders, and the controversies that exist in their management are summarized briefly and discussed. Cancer 2008;113(7 suppl):1807,43. Published 2008 American Cancer Society. [source]