Home About us Contact | |||
Tumor Suppressor Function (tumor + suppressor_function)
Selected AbstractsAberrant methylation impairs low density lipoprotein receptor-related protein 1B tumor suppressor function in gastric cancerGENES, CHROMOSOMES AND CANCER, Issue 5 2010Yen-Jung Lu DNA methylation plays a significant role in tumor progression. In this study, we used CpG microarray and differential methylation hybridization approaches to identify low density lipoprotein receptor-related protein 1B (LRP1B) as a novel epigenetic target in gastric cancer. LRP1B was hypermethylated in four gastric cancer cell lines, and low LRP1B mRNA expression was associated with high methylation levels in gastric cancer cell lines. Addition of a DNA methylation inhibitor (5-Aza-dC) restored the mRNA expression of LRP1B in these cell lines, indicating that DNA methylation is involved in regulating LRP1B expression. In 45 out of 74 (61%) clinical samples, LRP1B was highly methylated; LRP1B mRNA expression was significantly lower in 15 out of 19 (79%, P < 0.001) gastric tumor tissues than in corresponding adjacent normal tissues. In addition, ectopic expression of mLRP1B4 in gastric cancer cell lines suppressed cell growth, colony formation and tumor formation in nude mice. These results collectively indicate that LRP1B is a functional tumor suppressor gene in gastric cancer and that is regulated by DNA methylation. © 2010 Wiley-Liss,Inc. [source] Quantitative microsatellite analysis to delineate the commonly deleted region 1p22.3 in mantle cell lymphomasGENES, CHROMOSOMES AND CANCER, Issue 10 2006Asha Balakrishnan The molecular pathogenesis of mantle cell lymphomas (MCL), a subset of B-cell non-Hodgkin's lymphomas with a poor prognosis, is still poorly understood. In addition to the characteristic primary genetic alteration t(11;14)(q13;q32), several further genetic changes are present in most cases. One of the most frequent genomic imbalances is the deletion of 1p22.1,p31.1 observed in nearly one-third of MCL cases. This might indicate the presence of tumor suppressor gene(s) in this critical region of deletion. Quantitative microsatellite analysis (QuMA) is a real-time PCR-based method to detect DNA copy number changes. Since QuMA has the resolving power to detect subtle genomic alterations, including homozygous deletions, this may help to identify candidate tumor suppressor genes from deleted regions. To gain more insight into the molecular pathogenesis of MCL, QuMA was performed on genomic DNA from 57 MCL cases. Eight microsatellite loci mapping to the chromosomal region 1p22.3 were analyzed. Losses were observed in 51 of the 57 (,89.5%) samples. Two cases showed a homozygous deletion at the locus containing the gene SH3GLB1, which plays a key role in Bax-mediated apoptosis. Two hotspots with copy number losses were detected at chromosomal localizations 85.4 and 86.6 Mb encompassing BCL10 and CLCA2. Both the genes seem to be attractive candidates to study tumor suppressor function in MCL. This article contains Supplementary material available at http://www.interscience.wiley.com/jpages/1045,2257/suppmat. © 2006 Wiley-Liss, Inc. [source] WWOX: Its genomics, partners, and functionsJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 4 2009Sara Del Mare Abstract The WW domain-containing oxidoreductase (WWOX) spans one of the most active common fragile sites (CFSs) involved in cancer, FRA16D. WWOX encodes a 46-kDa protein that contains two N-terminal WW domains and a central short-chain dehydrogenase/reductase (SDR) domain. Through its WW domain, Wwox interacts with its partners and modulates their functions. Our data indicate that Wwox suppresses the transactivation function of several transcription factors implied in neoplasia by sequestering them in the cytoplasm. Work from our laboratory and other research groups have demonstrated that Wwox participates in a number of cellular processes including growth, differentiation, apoptosis, and tumor suppression. Targeted deletion of the Wwox gene in mice causes increased spontaneous and chemically induced tumor incidence supporting bona fide tumor suppressor function of WWOX. Moreover, generation of the Wwox -deficient mice uncovers, at least in part, some of the physiological in vivo functions of the WWOX gene. This review focuses on recent progress that elucidates Wwox functions in biology and pathology. J. Cell. Biochem. 108: 737,745, 2009. © 2009 Wiley-Liss, Inc. [source] Correlation of visinin-like-protein-1 expression with clinicopathological features in squamous cell carcinoma of the esophagusMOLECULAR CARCINOGENESIS, Issue 8 2006Carla Wickborn Abstract EF-hand Ca2+ -sensor proteins are key molecules for transducing Ca2+ signals into physiological answers and changes in cytosolic Ca2+ concentration control a variety of cellular responses, including proliferation, migration, and differentiation, which are relevant for tumor progression. The Ca2+ -sensor visinin-like protein-1 (VILIP-1) has recently attracted major interest due to its putative tumor suppressor function. Whereas VILIP-1 is expressed in normal skin, it is downregulated in skin tumors in a murine tumor model. The aim of this study was to investigate the expression of the Ca2+ -sensor VILIP-1 in squamous cell carcinoma of the esophagus and to correlate expression levels with clinicopathological features of the tumor. We examined VILIP-1 expression in 54 specimens of esophageal squamous cell carcinomas and 24 normal esophagus tissues, with immunohistochemical staining and immunofluorescence co-staining techniques. VILIP-1 expression was completely lost or significantly reduced in esophageal tumor tissue compared with normal squamous epithelium. Correlation with clinicopathological features indicated that there was significantly less VILIP-1 expression in lymph node positive (N,=,1) versus lymph node negative (N,=,0) tumors (P,=,0.002). Although there was no significant difference between highly (G1), moderately (G2) and poorly differentiated (G3) tumors (P,=,0.177), VILIP-1 expression in tumors is significantly correlated with the depth of tumor invasion (P,=,0.028 between T1, T2, T3, and T4). In contrast, co-staining with the proliferation marker Ki-67 indicated no significant correlation with proliferation rates in tumors (Ki-67 index of the tumor). In summary, the expression of the Ca2+ -sensor VILIP-1 was found to be lost during development of squamous cell carcinoma of the esophagus. The protein expression level significantly correlates with invasive features, such as depth of tumor invasion and local lymph node metastasis, but not with proliferation rate of tumor cells. © 2006 Wiley-Liss, Inc. [source] The cell death machinery governed by the p53 tumor suppressor in response to DNA damageCANCER SCIENCE, Issue 4 2010Kiyotsugu Yoshida The cellular response to genotoxic stress that damages DNA includes cell cycle arrest, activation of DNA repair, and in the event of irreparable damage, induction of apoptosis. However, the signals that determine cell fate, that is, survival or apoptosis, are largely unclear. The tumor suppressor p53 has been implicated in many important cellular processes, including regulation of apoptotic cell death. When cells encounter genotoxic stress, certain sensors for DNA lesions eventually stabilize and activate p53. Subsequently, p53 exerts its tumor suppressor function by transactivating numerous target genes. Active p53 is subjected to a complex and diverse array of covalent post-translational modifications, which selectively influence the expression of p53 target genes. In this regard, the molecular basis for how p53 induces apoptosis has been extensively studied; however, the relative contribution of each downstream effecter is still to be explored. Moreover, little is known about precise mechanisms by which modified p53 is capable of apoptosis induction. A thorough understanding for the whole picture of p53 modification in apoptosis will be extremely valuable in the development of highly effective and specific therapies for caner patients. This review is focused on the current views regarding the regulation of cell fate by p53 in the apoptotic response to DNA damage. (Cancer Sci 2010; 101: 831,835) [source] |