Home About us Contact | |||
Tumor Cell Survival (tumor + cell_survival)
Selected AbstractsCell survival and apoptosis-related molecules in cancer cells in effusions: A comprehensive reviewDIAGNOSTIC CYTOPATHOLOGY, Issue 8 2009Lilach Kleinberg Ph.D. Abstract Spreading of cancer cells to effusions is a manifestation of advanced disease, for which the chances of achieving cure using conventional treatment are low. This emphasizes both the importance of improving early detection and the need for developing targeted therapy modes. Such approaches should be based on characterization of the antiapoptotic, survival and drug resistance mechanisms of the metastatic cells in addition to analysis of the primary tumor. This review presents current knowledge regarding the expression and clinical role of cell survival and apoptosis-related molecules in nonhematological cancers in effusions. Differences in the anatomic site-related expression and clinical role of these proteins are additionally discussed. The data presented highlight the complexity of the multiple molecular pathways that mediate tumor cell survival within the serosal cavities. Diagn. Cytopathol. 2009. © 2009 Wiley-Liss, Inc. [source] Chromodomain helicase/adenosine triphosphatase DNA binding protein 1,like (CHD1l) gene suppresses the nucleus-to-mitochondria translocation of nur77 to sustain hepatocellular carcinoma cell survival,HEPATOLOGY, Issue 1 2009Leilei Chen Amplification of 1q21 has been detected in 58% to 78% of primary hepatocellular carcinoma cases, suggesting that one or more oncogenes within the amplicon play a critical role in the development of this disease. The chromodomain helicase/adenosine triphosphatase DNA binding protein 1,like gene (CHD1L) is a recently identified oncogene localized at 1q21. Our previous studies have demonstrated that CHD1L has strong tumorigenic ability and confers high susceptibility to spontaneous tumors in a CHD1L -transgenic mouse model. In this study, we demonstrate that the antiapoptotic ability of CHD1L is associated with its interaction with Nur77, a critical member of a p53-independent apoptotic pathway. As the first cellular protein identified to bind Nur77, CHD1L is able to inhibit the nucleus-to-mitochondria translocation of Nur77, which is the key step of Nur77-mediated apoptosis, resulting in the hindrance of the release of cytochrome c and the initiation of apoptosis. Knock-down of CHD1L expression by RNA interference could rescue the mitochondrial targeting of Nur77 and the subsequent apoptosis. Further studies found that the C-terminal Macro domain of CHD1L is responsible for the interaction with Nur77, and a CHD1L mutant lacking residues 600-897 failed to interact with Nur77 and prevented Nur77-mediated apoptosis. More importantly, we found that the inhibition of Nur77-mediated apoptosis by endogenous CHD1L is a critical biological cellular process in hepatocarcinogenesis. Conclusion: We demonstrate in this study that overexpression of CHD1L could sustain tumor cell survival by preventing Nur77-mediated apoptosis. (HEPATOLOGY 2009.) [source] Disparity between prostate tumor interior versus peripheral vasculature in response to verteporfin-mediated vascular-targeting therapyINTERNATIONAL JOURNAL OF CANCER, Issue 3 2008Bin Chen Abstract Photodynamic therapy (PDT) is a light-based cancer treatment modality. Here we employed both in vivo and ex vivo fluorescence imaging to visualize vascular response and tumor cell survival after verteporfin-mediated PDT designed to target tumor vasculature. EGFP-MatLyLu prostate tumor cells, transduced with EGFP using lentivirus vectors, were implanted in athymic nude mice. Immediately after PDT with different doses of verteporfin, tumor-bearing animals were injected with a fluorochrome-labeled albumin. The extravasation of fluorescent albumin along with tumor EGFP fluorescence was monitored noninvasively with a whole-body fluorescence imaging system. Ex vivo fluorescence microscopy was performed on frozen sections of tumor tissues taken at different times after treatment. Both in vivo and ex vivo imaging demonstrated that vascular-targeting PDT with verteporfin significantly increased the extravasation of fluorochrome-labeled albumin in the tumor tissue, especially in the tumor periphery. Although PDT induced substantial vascular shutdown in interior blood vessels, some peripheral tumor vessels were able to maintain perfusion function up to 24 hr after treatment. As a result, viable tumor cells were typically detected in the tumor periphery in spite of extensive tumor cell death. Our results demonstrate that vascular-targeting PDT with verteporfin causes a dose- and time-dependent increase in vascular permeability and decrease in blood perfusion. However, compared to the interior blood vessels, peripheral tumor blood vessels were found less sensitive to PDT-induced vascular shutdown, which was associated with subsequent tumor recurrence in the tumor periphery. © 2008 Wiley-Liss, Inc. [source] Transcriptional profiling on chromosome 19p indicated frequent downregulation of ACP5 expression in hepatocellular carcinomaINTERNATIONAL JOURNAL OF CANCER, Issue 6 2005Kathy Y.-Y. Abstract Chromosomal rearrangements unraveled by spectral karyotyping (SKY) indicated frequent chromosome 19 translocations in hepatocellular carcinoma (HCC). In an effort to characterize the aberrant 19 rearrangements in HCC, we performed positional mapping by fluorescence in-situ hybridization (FISH) in 10 HCC cell lines. SKY analysis indicated structural rearrangements of chromosome 19 in 6 cell lines, 4 of which demonstrated recurring 19p translocations with different partner chromosomes. Using fluorescence-labeled BAC probes, physical mapping indicated a breakpoint cluster between 19p13.12 and 19p12. A corresponding transcriptional mapping by cDNA array on 19p suggested the differential expression of a single downregulated gene ACP5 (tartrate-resistant acid phosphatase type 5). Quantitative RT-PCR confirmed the reduced expression of ACP5 and indicated a strong correlation of its repressed expression only in cell lines that contain a 19p rearrangement (p = 0.004). We further examined the expression of ACP5 in a cohort of 82 primary tumors and 74 matching nonmalignant liver tissues. In the primary HCC examined, a reduction of ACP5 transcripts by 2 to as much as 1,000-fold was suggested in 67% of tumors (55/82 cases). When compared to adjacent nonmalignant tissues, 46% of tumors (34/74 cases) demonstrated a lower expression level (p = 0.015). On closer examination, a high significance of ACP5 repression was suggested in the cirrhotic HCC subgroup that was derived from chronic hepatitis B infected patients (55%; 30/54 cases; p = 0.001). Functional examination of ACP5 ectopic expression in HCC cells further demonstrated a significant growth inhibitory effect of ACP5 on tumor cell survival (p < 0.001). In our study, the novel finding of common ACP5 downregulation in HCC may provide basis for further investigations on the role of acid phosphatase in hepatocarcinogenesis. © 2004 Wiley-Liss, Inc. [source] ,v -Integrin antagonist EMD 121974 induces apoptosis in brain tumor cells growing on vitronectin and tenascinINTERNATIONAL JOURNAL OF CANCER, Issue 5 2002Takashi Taga Abstract Orthotopic brain tumor growth is inhibited in athymic mice by the daily systemic administration of the ,v -integrin antagonist EMD 121974. This compound, a cyclic RGD-penta-peptide, is a potent inhibitor of angiogenesis, which induces apoptosis of growing endothelial cells through inhibition of their ,v -integrin interaction with the matrix proteins vitronectin and tenascin. Here we show that EMD 121974 also induces apoptosis in the ,v -integrin-expressing tumor cell lines U87 MG and DAOY by detaching them from vitronectin and tenascin, matrix proteins known to be essential for brain tumor growth and invasion. These matrix proteins are shown to be produced by the brain tumor cells in vitro and in vivo. Furthermore, only tumor cells expressing ,v -integrins responded to the treatment with EMD 121974, after xenotransplantation into the forebrain of nude mice, supporting the importance of tumor cell-matrix interactions in tumor cell survival in the brain. Thus, the ,v -antagonist EMD 121974 suppresses brain tumor growth through induction of apoptosis in both brain capillary and brain tumor cells by preventing their interaction with the matrix proteins vitronectin and tenascin. The dual action of this peptide explains its potent growth suppression of orthotopically transplanted brain tumors. © 2002 Wiley-Liss, Inc. [source] |