Home About us Contact | |||
Tritiated Thymidine (tritiated + thymidine)
Selected AbstractsExogenous bone marrow cells do not rescue non-irradiated mice from acute renal tubular damage caused by HgCl2, despite establishment of chimaerism and cell proliferation in bone marrow and spleenCELL PROLIFERATION, Issue 4 2008T.-C. Fang Objective: Various studies have shown that bone marrow stem cells can rescue mice from acute renal tubular damage under a conditioning advantage (irradiation or cisplatin treatment) favouring donor cell engraftment and regeneration; however, it is not known whether bone marrow cells (BMCs) can contribute to repair of acute tubular damage in the absence of a selection pressure for the donor cells. The aim of this study was to examine this possibility. Materials and methods: Ten-week-old female mice were assigned into control non-irradiated animals having only vehicle treatment, HgCl2 -treated non-irradiated mice, HgCl2 -treated non-irradiated mice infused with male BMCs 1 day after HgCl2, and vehicle-treated mice with male BMCs. Tritiated thymidine was given 1 h before animal killing. Results: Donor BMCs could not alleviate non-irradiated mice from acute tubular damage caused by HgCl2, deduced by no reduction in serum urea nitrogen combined with negligible cell engraftment. However, donor BMCs could home to the bone marrow and spleen and display proliferative activity. This is the first report to show that despite no preparative myeloablation of recipients, engrafted donor BMCs can synthesize DNA in the bone marrow and spleen. Conclusions: Exogenous BMCs do not rescue non-irradiated mice from acute renal tubular damage caused by HgCl2, despite establishment of chimerism and cell proliferation in bone marrow and spleen. [source] Low doses of bromo- and iododeoxyuridine produce near-saturation labeling of adult proliferative populations in the dentate gyrusEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2005Kevin A. Burns Abstract Cell proliferation can be detected by the incorporation of tritiated thymidine (3H-dT) or halopyrimidines during DNA synthesis in progenitor cells. Administration of two thymidine analogues at different times can further determine the cell-cycle kinetics of proliferating cells. Traditionally, this was done by combining bromodeoxyuridine (BrdU) immunocytochemistry and 3H-dT autoradiography, or by BrdU and iododeoxyuridine (IdU) double-labeling using two mouse antibodies. However, these methods either require lengthy exposure time or involve complicated histological procedures for differentiating between two antibodies of the same species. Here we report a simple and reliable method of distinguishing BrdU- and IdU-labeled cells by immunofluorescence. This method uses a mouse monoclonal antibody that recognizes both BrdU and IdU and a rat anti-BrdU antibody that has no cross-reactivity with IdU. When combined with species-specific secondary antibodies that are conjugated to different fluorophores, this method identifies BrdU- and IdU-incorporation as doubly and singly labeled cells, respectively. This method has broad applications. First, we demonstrate that this method can distinguish mouse cortical neurons generated on different embryonic days. Second, by administering IdU and BrdU at varying intervals, we used this method to calculate that the length of S-phase of neural progenitor cells in the adult mouse dentate gyrus is approximately 6 h. Finally, we show that a six-fold higher concentration of IdU detects only 10% more cells than the standard dose of BrdU (50 mg/kg) using the double-labeling method. These results suggest that the standard dose of BrdU is sufficient to label the majority of proliferative populations in the S-phase in pulse labeling experiments. [source] Nucleoside transporter expression and function in cultured mouse astrocytesGLIA, Issue 1 2005Liang Peng Abstract Uptake of purine and pyrimidine nucleosides in astrocytes is important for several reasons: (1) uptake of nucleosides contributes to nucleic acid synthesis; (2) astrocytes synthesize AMP, ADP, and ATP from adenosine and GTP from guanosine; and (3) adenosine and guanosine function as neuromodulators, whose effects are partly terminated by cellular uptake. It has previously been shown that adenosine is rapidly accumulated by active uptake in astrocytes (Hertz and Matz, Neurochem Res 14:755,760, 1989), but the ratio between active uptake and metabolism-driven uptake of adenosine is unknown, as are uptake characteristics for guanosine. The present study therefore aims at providing detailed information of nucleoside transport and transporters in primary cultures of mouse astrocytes. Reverse transcription-polymerase chain reaction identified the two equilibrative nucleoside transporters, ENT1 and ENT2, together with the concentrative nucleoside transporter CNT2, whereas CNT3 was absent, and CNT1 expression could not be investigated. Uptake studies of tritiated thymidine, formycin B, guanosine, and adenosine (3-s uptakes at 1,4°C to study diffusional uptake and 1,60-min uptakes at 37°C to study concentrative uptake) demonstrated a fast diffusional uptake of all four nucleosides, a small, Na+ -independent and probably metabolism-driven uptake of thymidine (consistent with DNA synthesis), larger metabolism-driven uptakes of guanosine (consistent with synthesis of DNA, RNA, and GTP) and especially of adenosine (consistent with rapid nucleotide synthesis), and Na+ -dependent uptakes of adenosine (consistent with its concentrative uptake) and guanosine, rendering neuromodulator uptake independent of nucleoside metabolism. Astrocytes are accordingly well suited for both intense nucleoside metabolism and metabolism-independent uptake to terminate neuromodulator effects of adenosine and guanosine. © 2005 Wiley-Liss, Inc. [source] HLA type and immune response to Borrelia burgdorferi outer surface protein a in people in whom arthritis developed after Lyme disease vaccinationARTHRITIS & RHEUMATISM, Issue 4 2009Robert Ball Objective To investigate whether persons with treatment-resistant Lyme arthritis,associated HLA alleles might develop arthritis as a result of an autoimmune reaction triggered by Borrelia burgdorferi outer surface protein A (OspA), the Lyme disease vaccine antigen. Methods Persons in whom inflammatory arthritis had developed after Lyme disease vaccine (cases) were compared with 3 control groups: 1) inflammatory arthritis but not Lyme disease vaccine (arthritis controls), 2) Lyme disease vaccine but not inflammatory arthritis (vaccine controls), and 3) neither Lyme disease vaccine nor inflammatory arthritis (normal controls). HLA,DRB1 allele typing, Western blotting for Lyme antigen, and T cell reactivity testing were performed. Results Twenty-seven cases were matched with 162 controls (54 in each control group). Odds ratios (ORs) for the presence of 1 or 2 treatment-resistant Lyme arthritis alleles were 0.8 (95% confidence interval [95% CI] 0.3-2.1), 1.6 (95% CI 0.5,4.4), and 1.75 (95% CI 0.6,5.3) in cases versus arthritis controls, vaccine controls, and normal controls, respectively. There were no significant differences in the frequency of DRB1 alleles. T cell response to OspA was similar between cases and vaccine controls, as measured using the stimulation index (OR 1.6 [95% CI 0.5,5.1]) or change in uptake of tritiated thymidine (counts per minute) (OR 0.7 [95% CI 0.2,2.3]), but cases were less likely to have IgG antibodies to OspA (OR 0.3 [95% CI 0.1,0.8]). Cases were sampled closer to the time of vaccination (median 3.59 years versus 5.48 years), and fewer cases had received 3 doses of vaccine (37% versus 93%). Conclusion Treatment-resistant Lyme arthritis alleles were not found more commonly in persons who developed arthritis after Lyme disease vaccination, and immune responses to OspA were not significantly more common in arthritis cases. These results suggest that Lyme disease vaccine is not a major factor in the development of arthritis in these cases. [source] Cell kinetic studies in the murine ventral tongue epithelium: thymidine metabolism studies and circadian rhythm determinationCELL PROLIFERATION, Issue 2002C. S. Potten Abstract. ,The oral mucosa is a rapidly replacing body tissue that has received relatively little attention in terms of defining its cell kinetics and cellular organization. The tissue is sensitive to the effects of cytotoxic agents, the consequence of which can be stem cell death with the subsequent development of ulcers and the symptoms of oral mucositis. There is considerable interest in designing strategies to protect oral stem cells and, hence, reduce the mucositis side-effects in cancer therapy patients. Here we present details of a new histometric approach designed to investigate the changing patterns in cellularity in the ventral tongue mucosa. This initial paper in a series of four papers presents observations on the changing patterns in the labelling index following tritiated thymidine administration, which suggest a delayed uptake of tritiated thymidine from a long-term intracellular thymidine pool, a phenomenon that will complicate cell kinetic interpretations in a variety of experimental situations. We also provide data on the changing pattern of mitotic activity through a 24-h period (circadian rhythms). Using vincristine-induced stathmokinesis, the data indicate that 54% of the basal cells divide each day and that there is a high degree of synchrony in mitotic activity with a mitotic peak occurring around 13.00 h. The mitotic circadian peak occurs 9-12 h after the circadian peak in DNA synthesis. The data presented here and in the subsequent papers could be interpreted to indicate that basal cells of BDF1 mice have an average turnover time of about 26-44 h with some cells cycling once a day and others with a 2- or 3-day cell cycle time. [source] Cell kinetic studies in murine ventral tongue epithelium: cell cycle progression studies using double labelling techniquesCELL PROLIFERATION, Issue 2002C. S. Potten Abstract. The dorsal and ventral epithelia on the murine tongue exhibit very pronounced circadian rhythms in terms of the cell cycle. These rhythms are such that three injections of tritiated thymidine 3 h apart spanning the circadian peak in S phase cells labelled between 40 and 50% of the basal cells. Injection of bromodeoxyuridine generally gave slightly lower labelling indices. Approximately the same proportion (54% of the basal cells) could be accumulated in metaphase over a 24-h period using vincristine as a stathmokinetic agent. The experiments reported here using mouse ventral tongue epithelium use double-labelling approaches to address the question: what proportion of the approximately 50% of the basal cells that are proliferating have a 24-h cell cycle and can therefore be labelled by a similar labelling protocol the following day? The results suggest a heterogeneity amongst the proliferating basal cells, similar to the heterogeneity proposed for the dorsal tongue epithelium. Although not all the basal component has been accounted for, the data presented here suggest that about 20% of the basal cells may have a cell cycle time of 24 h, about 30% appear to have a longer cell cycle time (48 or 72 h), while about 20% of the basal cells appear to be postmitotic maturing G1 cells, awaiting the appropriate signals for migration into the suprabasal layer. [source] The topical glucocorticoids beclomethasone dipropionate and fluticasone propionate inhibit human T-cell allergen-induced production of IL-5, IL-3 and GM-CSF mRNA and proteinCLINICAL & EXPERIMENTAL ALLERGY, Issue 1 2001N. Powell T-cell production of eosinophil-active cytokines (IL-5, IL-3, GM-CSF) is thought to be fundamental to asthma pathogenesis. Inhaled aeroallergens may be one important stimulus for T-cell cytokine production in asthma. To compare the potency and efficacy of the topical anti-asthma glucocorticoids beclomethasone dipropionate (BDP) and fluticasone propionate (FP) in inhibiting allergen-driven peripheral blood T-cell proliferation and production of IL-3, IL-5 and GM-CSF mRNA and protein. Peripheral blood mononuclear cells from six atopic asthmatics sensitized to house dust mite (HDM) were cultured in the presence of HDM and serial dilutions of BDP or FP in vitro. Cellular proliferation (7 days) and culture supernatant cytokine concentrations (6 days) were measured by uptake of tritiated thymidine and ELISA, respectively. Cytokine mRNA expression (24 h) was measured in three subjects using a quantitative PCR technique. Both BDP and FP inhibited allergen-induced T-cell proliferation, expression of IL-3, IL-5 and GM-CSF mRNA, and secretion of the corresponding proteins in a concentration-dependent fashion. FP was considerably more potent, but not more efficacious, in exerting these actions. Both BDP and FP have the potential markedly to inhibit allergen-induced T-cell production of asthma-relevant cytokines. This activity is effected at the level of T-cell proliferation and cytokine gene transcription. These properties may be key features of the anti-asthma activity of these drugs. The greater potency of FP in vitro may be responsible for its greater clinical potency. [source] |