Trimellitic Anhydride (trimellitic + anhydride)

Distribution by Scientific Domains


Selected Abstracts


Methods for the identi,cation of chemical respiratory allergens in rodents: comparisons of cytokine pro,ling with induced changes in serum IgE

JOURNAL OF APPLIED TOXICOLOGY, Issue 4 2003
R. J. Dearman
Abstract No validated or widely recognized test methods are currently available for the prospective identi,cation of chemicals with the potential to cause respiratory allergy. The cellular and molecular mechanisms that result in the induction of chemical sensitization of the respiratory tract are unclear, although there is evidence for the selective development of T helper 2 (Th2)-type responses and, in some cases, the production of IgE antibody. We have therefore examined the utility of cytokine pro,ling using BALB/c mice, together with the measurement of induced increases in the total serum concentration of IgE in the Brown Norway (BN) rat, as markers for the prospective identi,cation of chemical respiratory allergens. Responses provoked by the reference respiratory allergen trimellitic anhydride (TMA) have been compared with those stimulated by the respiratory sensitizing diisocyanates toluene diisocyanate (TDI) and hexamethylene diisocyanate (HDI) and by the acid anhydride hexahydrophthalic anhydride (HHPA). Topical exposure of BN rats to TMA, TDI and HHPA each provoked marked immune activation (increases in lymph node cellularity and proliferation). However, only treatment with TMA stimulated vigorous increases in the total serum concentration of IgE. In contrast, exposure to HHPA, TDI or HDI failed to provoke signi,cant changes in serum IgE concentration or induced only transient and relatively weak increases in serum IgE levels. In parallel experiments using BALB/c strain mice, however, topical application of all four chemical respiratory allergens provoked a marked Th2-type cytokine secretion pro,le in draining lymph node cells. These data suggest that the measurement of induced changes in serum IgE is not suf,ciently sensitive for the robust identi,cation of chemical respiratory allergens. Furthermore, irrespective of the reasons for variations in TMA-induced IgE production among BN rats, doubts remain regarding the utility of these animals for the characterization of immune responses to chemical allergens. Cytokine pro,ling using the BALB/c strain mouse apparently provides a more robust method for the hazard assessment of chemical respiratory allergens. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Respiratory hypersensitivity to trimellitic anhydride in Brown Norway Rats: a comparison of endpoints

JOURNAL OF APPLIED TOXICOLOGY, Issue 2 2002
Jürgen Pauluhn
Abstract A rat bioassay has been developed to provide an objective approach for the identification and classification of respiratory allergy using trimellitic anhydride (TMA), which is a known respiratory tract irritant and asthmagen. Particular emphasis was placed on the study of route-of-induction-dependent effects and their progression upon inhalation challenge with TMA (,23 mg m,3 for a duration of 30 min), which included analysis of specific and non-specific airway hyperreactivity and pulmonary inflammation initiated and sustained by immunological processes. Refinement of the bioassay focused on procedures to probe changes occurring upon challenge with TMA or methacholine aerosols using physiological, biochemical and immunological procedures. Following challenge with TMA, the rats sensitized to TMA showed marked changes in peak inspiratory and expiratory air flows and respiratory minute volume. In these animals, a sustained pulmonary inflammation occurred, characterized by specific endpoints determined in bronchoalveolar lavage (lactate dehydrogenase, protein, nitrite, eosinophil peroxidase, myeloperoxidase). When compared with the naive controls, lung weights were increased significantly, as were the weights of lung-associated lymph nodes following inhalation induction and auricular lymph nodes following topical induction. The extent of changes observed was equal or more pronounced in animals sensitized epicutaneously (day 0 : 150 µl vehicle/50% TMA on each flank, day 7; booster administration to the skin of the dorsum of both ears using half the concentration and volume used on day 0) when compared with rats sensitized by 5 × 3 h day,1 inhalation exposures (low dose: 25 mg TMA m,3, high dose: 120 mg TMA m,3). In summary, the findings support the conclusion that the Brown Norway rat model is suitable for identifying TMA as an agent that causes both an immediate-type change of breathing patterns and a delayed-type sustained pulmonary inflammatory response. However, it remains unresolved whether the marked effects observed in the topically sensitized rats are more related to a route-of-induction or dose-dependent phenomenon. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Induced changes in total serum IgE concentration in the Brown Norway rat: potential for identification of chemical respiratory allergens

JOURNAL OF APPLIED TOXICOLOGY, Issue 1 2002
E. V. Warbrick
Abstract A variety of chemicals can cause sensitization of the respiratory tract and occupational asthma that may be associated with IgE antibody production. Topical exposure to chemical respiratory allergens such as trimellitic anhydride (TMA) has been shown previously to induce increases in the total serum concentration of IgE in BALB/c strain mice. Contact allergens such as 2,4-dinitrochlorobenzene (DNCB), which apparently lack respiratory sensitizing potential, fail to provoke similar changes. However, it became apparent with time that there was some inter-animal variation in constitutive and inducible IgE levels. We have now examined the influence of topical exposure to TMA and DNCB on serum IgE levels in the Brown Norway (BN) rat. Such animals can be bled serially and thus it is possible to perform longitudinal analyses of changes in serum IgE concentration. The kinetics of IgE responses therefore can be followed on an individual animal basis, allowing discrimination between transient and sustained increases in serum IgE concentration. Rats (n = 5) were exposed on shaved flanks to 50% TMA, to 1% DNCB (concentrations that elicit comparable immune activation with respect to draining lymph node cellularity and proliferation) or to vehicle alone. Total IgE was measured by enzyme-linked immunosorbent assay in serum samples taken prior to and 14,42 days following initial exposure. Those animals having high pre-existing IgE levels (>1.0 µg ml,1) were excluded from subsequent analyses. The levels of serum IgE in the majority of rats exposed to DNCB or vehicle alone remained relatively stable throughout the duration of all the experiments conducted, although some animals displayed transient increases in serum IgE. Only TMA treatment was associated with a significant and sustained increase in the level of serum IgE in the majority of experiments. The elevated concentrations of IgE induced by topical exposure to TMA are persistent, the results reported here demonstrating that induced changes in IgE are maximal or near maximal at approximately 35 days, with a significant increase in IgE demonstrable for at least 42 days following the initiation of exposure. Interestingly, although TMA and DNCB at the test concentrations used were found to be of comparable overall immunogenicity with regard to lymph node activation and the induction of lymph node cell proliferation, there were apparent differences in humoral immune responses. Thus, not only did exposure to TMA stimulate increases in total serum IgE concentration and the production of specific IgE antibody, but also a more vigorous IgG antibody response was provoked by TMA compared with DNCB. These data suggest that the measurement of induced changes in serum IgE concentration in the BN strain of rat is able to differentiate between different classes of chemical allergen. Given the inter-animal variation in IgE production, it would be prudent to incorporate a concurrent assessment of responses induced by treatment with TMA as a positive control against which to assess the activity of other test materials. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Synthesis and interfacial behaviors of amphiphilic poly(oxypropylene) amidoacids

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 1 2006
Kuan-Liang Wei
Abstract A series of hydrophobic poly(oxypropylene) (POP)-backboned and hydrophilic poly(oxyethylene)-backboned amidoacids and imidoacids were prepared through the reaction of poly(oxyalkylene) diamines and trimellitic anhydride (TMA) under mild conditions. The synthesized copolymers were characterized with nuclear magnetic resonance and Fourier transform infrared. Their ability to lower the water surface tension and toluene/water interfacial tension was measured and correlated with the hydrophobic/hydrophilic balance with multiple sodium carboxylate functionalities. The specific POP2000/TMA copolymers, consisting of a 2000 g/mol POP segment and multiple amidoacid functionalities, enabled the demonstration of a strong surfactant tendency and a critical micelle concentration at 0.1 wt %. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 646,652, 2006 [source]


Synthesis and properties of organosoluble poly(amide imide imide)s based on tetraimide dicarboxylic acid condensed from 4,4,-(hexafluoroisopropylidene)diphthalic anhydride, 4,4,-oxydianiline, and trimellitic anhydride and various aromatic diamines

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 8 2002
Chin-Ping Yang
Abstract A novel tetraimide dicarboxylic acid was synthesized with the ring-opening addition of 4,4,-(hexafluoroisopropylidene)diphthalic anhydride, 4,4,-oxydianiline, and trimellitic anhydride in a 1/2/2 molar ratio in N -methyl-2-pyrrolidone followed by azeotropic condensation to tetraimide dicarboxylic acid. A series of poly(amide imide imide)s (PAIIs) with inherent viscosities of 0.8,1.1 dL/g were prepared from tetraimide dicarboxylic acid with various aromatic diamines by direct polycondensation. Most of the PAIIs were readily soluble in a variety of amide polar solvents and even in less polar m -cresol and pyridine. Solvent-cast films had tensile strengths ranging from 99 to 106 MPa, elongations at break ranging from 8 to 13%, and initial moduli ranging from 2.0 to 2.3 GPa. The glass-transition temperatures of these PAIIs were recorded at 244,276 °C. They had 10% weight losses at temperatures above 520 °C in air or nitrogen atmospheres. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1092,1102, 2002 [source]


Preparation and properties of new thermally stable poly(ether imide amide)s

POLYMER INTERNATIONAL, Issue 8 2004
Shahram Mehdipour-Ataei
Abstract 2,6-Bis(4-aminophenoxy)pyridine was prepared via reaction of 4-aminophenol with 2,6-dichloropyridine in the presence of potassium carbonate. Reaction of the diamine with two mol of trimellitic anhydride afforded a diacid with preformed imide structures. Poly(ether imide amide)s were prepared by polycondensation reactions of the diacid with different diamines in the presence of triphenyl phosphite. All the monomers and polymers were fully characterized and the physical properties of the polymers including solution viscosity, thermal stability, thermal behavior and solubility were studied. Thermal analysis data showed the polymers to have high thermal stability. Copyright © 2004 Society of Chemical Industry [source]


Synthesis and characterization of novel aromatic poly(amide-imide)s derived from 2,2,-bis(4-trimellitimidophenoxy)biphenyl or 2,2,-bis(4-trimellitimidophenoxy)-1,1,-binaphthyl and various aromatic diamines

POLYMER INTERNATIONAL, Issue 7 2003
Ahmad Banihashemi
Abstract New aromatic diimide-dicarboxylic acids having kinked and cranked structures, 2,2,-bis(4-trimellitimidophenoxy)biphenyl (2a) and 2,2,-bis(4-trimellitimidophenoxy)-1,1,-binaphthyl (2b), were synthesized by the reaction of trimellitic anhydride with 2,2,-bis(4-aminophenoxy)biphenyl (1a) and 2,2,-bis(4-aminophenoxy)-1,1,-binaphthyl (1b), respectively. Compounds 2a and 2b were characterized by FT-IR and NMR spectroscopy and elemental analyses. Then, a series of novel aromatic poly(amide-imide)s were prepared by the phosphorylation polycondensation of the synthesized monomers with various aromatic diamines. Owing to structural similarity, and a comparison of the characterization data, a model compound was synthesized by the reaction of 2b with aniline. The resulting polymers with inherent viscosities of 0.58,0.97 dl g,1 were obtained in high yield. The polymers were fully characterized by FT-IR and NMR spectroscopy. The ultraviolet ,max values of the poly(amide-imide)s were also determined. The polymers were readily soluble in polar aprotic solvents. They exhibited excellent thermal stabilities and had 10% weight loss at temperatures above 500 °C under a nitrogen atmosphere. Copyright © 2003 Society of Chemical Industry [source]