Home About us Contact | |||
Triacylglycerol Composition (triacylglycerol + composition)
Selected AbstractsComparative analysis of triacylglycerol composition, melting properties and polymorphic behavior of palm oil and fractionsEUROPEAN JOURNAL OF LIPID SCIENCE AND TECHNOLOGY, Issue 4 2007Sabine Braipson-Danthine Abstract Palm oil is without doubt the most widely fractionated oil. Dry fractionation is based on differences in the melting points of triacylglycerols (TAG) which will crystallize selectively during the cooling process. Unfortunately, limitations due to intersolubility, closely linked to polymorphism, induce formation of co-crystals at each crystallization step. For this reason, only restricted TAG enrichments are observed. In this work, a series of samples (24) of palm oil, solid and liquid fractions (stearins, mid fractions, oleins and superoleins) have been selected and examined in terms of TAG composition (by HPLC), differential scanning calorimetry (DSC) melting profile and variable temperature powder X-ray diffraction pattern. Three major endotherms [low-melting, high-melting and very high-melting peaks (LMP, HMP and VHMP)] are detected in the DSC melting profiles (5,°C/min). The VHMP is only recorded for palm stearin which contains more SSS components. The HMP contribution is weak for palm olein and even not observed for palm super oleins. The LMP is usually made up of UUU, SUU and SUS components; SUS components are observed in both LMP and HMP; the HMP is also made up of some SSS, except for palm oleins and super oleins. Sub-,2, sub-,1, ,, ,'2, ,'1 and , polymorphic forms are recorded; the LMP components preferentially crystallize in sub-,2, sub-,1 and ,,forms; the HMP components generally crystallize in ,'2 and ,'1, with a tendency to exhibit ,,crystals, depending on the SSS content. Components of the VHMP have an increased tendency to stabilize in the ,,form; in view of the results, we can assume that there is a clear relationship between TAG composition, melting properties and polymorphic behavior and of palm oil and fractions. [source] Structural and compositional changes in very low density lipoprotein triacylglycerols during basal lipolysisFEBS JOURNAL, Issue 24 2002Jyrki J. Ågren Triacylglycerols secreted by liver and carried by very low density lipoprotein (VLDL) are hydrolysed in circulation by lipoprotein and hepatic lipases. These enzymes have been shown to have positional and fatty acid specificity in vitro. If there were specificity in basal lipolysis in vivo, triacylglycerol compositions of circulating and newly secreted VLDL would be different. To study this we compared the composition of normal fasting VLDL triacylglycerol of Wistar rats to that obtained after blocking lipolysis by Triton WR1339, which increased plasma VLDL triacylglycerol concentration about 4.7-fold in 2 h. Analyses of molecular species of sn -1,2- and sn -2,3-diacylglycerol moieties and stereospecific triacylglycerol analysis revealed major differences between the groups in the VLDL triacylglycerol composition. In nontreated rats, the proportion of 16:0 was higher and that of 18:2n-6 lower in the sn -1 position. The proportion of 14:0 was lower in all positions and that of 18:0 was lower in the sn -1 and sn -3 positions in nontreated rats whereas the proportions of 20:4n-6, 20:5n-3, 22:5n-3 and 22:6n-3 were higher in the sn -1 and lower in the sn -2 position. These results suggest that the fatty acid of the sn -1 position is the most decisive factor in determining the sensitivity for hydrolysis of the triacylglycerol. In addition, triacylglycerol species with highly unsaturated fatty acids in the sn -2 position also favoured hydrolysis. The in vivo substrate specificity followed only partly that obtained in in vitro studies indicating that the nature of molecular association of fatty acids in natural triacylglycerol affects its susceptibility to lipolysis. To conclude, our results indicate that preferential basal lipolysis leads to major structural differences between circulating and newly secreted VLDL triacylglycerol. These differences extend beyond those anticipated from analysis of total fatty acids and constitute a previously unrecognized feature of VLDL triacylglycerol metabolism. [source] Fatty acid and triacylglycerol composition and thermal behaviour of fats from seeds of Brazilian Amazonian Theobroma speciesJOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 13 2002M Victoria Gilabert-Escrivá Abstract Raw materials for cocoa butter substitutes, replacements or equivalents depend mostly on the unsteady supply from wild stands of plants, while there is no current supply of Neotropical origin. Seed fats from Theobroma species (T cacao, T bicolor, T grandiflorum, T obovatum, T subincanum, T speciosum, T sylvestre and T microcarpum, plus the closely related species Herrania mariae) were analysed for fatty acid and triacylglycerol composition by gas and liquid chromatography respectively, for iodine value, for melting point by open capillary tube and for solid fat content (SFC) by nuclear magnetic resonance. All Theobroma species had significantly lower palmitate levels than T cacao, except for T sylvestre and T speciosum, T microcarpum presented highly unsaturated fat (C18:2), while H mariae had high levels of arachidate. Fats from T sylvestre and T speciosum had a similar iodine value to T cacao and a higher melting point. No fat from the other species presented a similar melting profile to cocoa butter. T sylvestre and T bicolor were the most similar to T cacao but had a higher SFC at human body temperature. T sylvestre and T speciosum seed fats had more POP than cocoa butter. Fats from seeds of T speciosum, T sylvestre and T bicolor could be recommended as cocoa butter substitutes, while fats from species of the section Glossopetalum could be employed in products requiring fats with a lower melting point. © 2002 Society of Chemical Industry [source] Structural and compositional changes in very low density lipoprotein triacylglycerols during basal lipolysisFEBS JOURNAL, Issue 24 2002Jyrki J. Ågren Triacylglycerols secreted by liver and carried by very low density lipoprotein (VLDL) are hydrolysed in circulation by lipoprotein and hepatic lipases. These enzymes have been shown to have positional and fatty acid specificity in vitro. If there were specificity in basal lipolysis in vivo, triacylglycerol compositions of circulating and newly secreted VLDL would be different. To study this we compared the composition of normal fasting VLDL triacylglycerol of Wistar rats to that obtained after blocking lipolysis by Triton WR1339, which increased plasma VLDL triacylglycerol concentration about 4.7-fold in 2 h. Analyses of molecular species of sn -1,2- and sn -2,3-diacylglycerol moieties and stereospecific triacylglycerol analysis revealed major differences between the groups in the VLDL triacylglycerol composition. In nontreated rats, the proportion of 16:0 was higher and that of 18:2n-6 lower in the sn -1 position. The proportion of 14:0 was lower in all positions and that of 18:0 was lower in the sn -1 and sn -3 positions in nontreated rats whereas the proportions of 20:4n-6, 20:5n-3, 22:5n-3 and 22:6n-3 were higher in the sn -1 and lower in the sn -2 position. These results suggest that the fatty acid of the sn -1 position is the most decisive factor in determining the sensitivity for hydrolysis of the triacylglycerol. In addition, triacylglycerol species with highly unsaturated fatty acids in the sn -2 position also favoured hydrolysis. The in vivo substrate specificity followed only partly that obtained in in vitro studies indicating that the nature of molecular association of fatty acids in natural triacylglycerol affects its susceptibility to lipolysis. To conclude, our results indicate that preferential basal lipolysis leads to major structural differences between circulating and newly secreted VLDL triacylglycerol. These differences extend beyond those anticipated from analysis of total fatty acids and constitute a previously unrecognized feature of VLDL triacylglycerol metabolism. [source] |