Home About us Contact | |||
Treated Hearts (treated + heart)
Selected AbstractsTeratogenic effects of bis-diamine on the developing myocardiumBIRTH DEFECTS RESEARCH, Issue 3 2004Nobuhiko Okamoto Abstract BACKGROUND Bis-diamine induces conotruncal anomalies and disproportional ventricular development in rat embryos when administered to the mother. To evaluate the mechanisms of disproportional ventricular development in the anomalous heart, we analyzed the morphology of the embryonic heart and investigated cardiomyocytic DNA synthesis and apoptosis. METHODS A single dose of 200 mg of bis-diamine was administered to pregnant rats Wistar on day 9.5 of pregnancy. The embryos were removed on each embryonic day from 10.5 to 18.5. Expression of cardiotrophin-1 and hepatocyte growth factor was investigated on the sections, and cardiotrophin-1, hepatocyte growth factor and myocyte enhancer factor 2 mRNA expression was examined by reverse transcriptase,polymerase chain reaction. Myocardial DNA synthesis was investigated using 5-bromo-2,-deoxyuridine and the labeling index was calculated for each heart. Apoptosis was also analyzed using TUNEL reaction and electrophoresis of DNA fragmentation. RESULTS The embryos treated with bis-diamine had conotruncal anomalies associated with thin left ventricular wall in the later stage. The labeling index on embryonic day 15.5 and 16.5 was significantly lower than those in the controls. Hepatocyte growth factor and cardiotrophin-1 mRNA expression was upregulated on embryonic day 12.5 and 15.5 in bis-diamine,treated hearts. Fewer apoptotic cells were detected in the hearts of bis-diamine,treated embryos than in control hearts from embryonic day 14.5 to 16.5. CONCLUSIONS The ventricular disproportion in the bis-diamine,treated heart may be caused by the early myocardial differentiation delay and poor proliferation and reduced apoptosis associated with anomalous circulatory condition in the later stage. Birth Defects Research (Part A), 2004. © 2004 Wiley-Liss, Inc. [source] Melatonin protects against cardiac toxicity of doxorubicin in ratJOURNAL OF PINEAL RESEARCH, Issue 4 2001Mei Feng Xu Doxorubicin (DOX) is commonly used for the treatment of hematological and solid tumors. However, there are serious toxic effects on the cardiovascular system, which limits the application of the drug. Recently, melatonin has been reported to have immunomodulatory effect in addition to lowering cholesterol levels as well as inhibiting malignant tumors. In this study, the effect of melatonin against the toxicity of doxorubicin was investigated in rats. Hemodynamic function, pathological and biochemical changes were determined in different treated hearts. Our findings showed that a significant protection by melatonin (6 mg kg,1 for 15 days, cumulative dose of 90 mg kg,1) against the DOX-induced toxicity was observed. Cardiac function was improved and lipid peroxidation decreased after melatonin treatment. It is concluded that melatonin provides protection against doxorubicin toxicity via an attenuation of lipid peroxidation. [source] Teratogenic effects of bis-diamine on the developing myocardiumBIRTH DEFECTS RESEARCH, Issue 3 2004Nobuhiko Okamoto Abstract BACKGROUND Bis-diamine induces conotruncal anomalies and disproportional ventricular development in rat embryos when administered to the mother. To evaluate the mechanisms of disproportional ventricular development in the anomalous heart, we analyzed the morphology of the embryonic heart and investigated cardiomyocytic DNA synthesis and apoptosis. METHODS A single dose of 200 mg of bis-diamine was administered to pregnant rats Wistar on day 9.5 of pregnancy. The embryos were removed on each embryonic day from 10.5 to 18.5. Expression of cardiotrophin-1 and hepatocyte growth factor was investigated on the sections, and cardiotrophin-1, hepatocyte growth factor and myocyte enhancer factor 2 mRNA expression was examined by reverse transcriptase,polymerase chain reaction. Myocardial DNA synthesis was investigated using 5-bromo-2,-deoxyuridine and the labeling index was calculated for each heart. Apoptosis was also analyzed using TUNEL reaction and electrophoresis of DNA fragmentation. RESULTS The embryos treated with bis-diamine had conotruncal anomalies associated with thin left ventricular wall in the later stage. The labeling index on embryonic day 15.5 and 16.5 was significantly lower than those in the controls. Hepatocyte growth factor and cardiotrophin-1 mRNA expression was upregulated on embryonic day 12.5 and 15.5 in bis-diamine,treated hearts. Fewer apoptotic cells were detected in the hearts of bis-diamine,treated embryos than in control hearts from embryonic day 14.5 to 16.5. CONCLUSIONS The ventricular disproportion in the bis-diamine,treated heart may be caused by the early myocardial differentiation delay and poor proliferation and reduced apoptosis associated with anomalous circulatory condition in the later stage. Birth Defects Research (Part A), 2004. © 2004 Wiley-Liss, Inc. [source] Cardioprotection from ischemia-reperfusion injury due to Ras-GTPase inhibition is attenuated by glibenclamide in the globally ischemic heartCELL BIOCHEMISTRY AND FUNCTION, Issue 4 2007Ibrahim Al-Rashdan Abstract The present study was designed to see if acute local inhibition of Ras-GTPase before or after ischemia (during perfusion) would produce protection against ischemia and reperfusion (I/R)-induced cardiac dysfunction. The effect of glibenclamide, an inhibitor of cardiac mitochondrial ATP-sensitive potassium (mitoKATP) channels, on Ras-GTPase-mediated cardioprotection was also studied. A 40,min episode of global ischemia followed by a 30,min reperfusion in perfused rat hearts produced significantly impaired cardiac function, measured as left ventricular developed pressure (Pmax) and left ventricular end-diastolic pressure (LVEDP). Perfusion with Ras-GTPase inhibitor FPT III before I/R [FPT(pre)], significantly enhanced cardiac recovery in terms of left ventricular contractility. Pmax was significantly higher at the end of 30,min reperfusion in FPT(pre)-treated hearts compared to pre-conditioned hearts. However, the degree of improvement in left ventricular contractility was significantly less when FPT III was given only after ischemia during reperfusion [FPT(post)]. Combination treatment with FPT III and glibenclamide before I/R resulted in significant reduction of FPT III-mediated cardioprotection. These data suggest that activation of Ras-GTPase signaling pathways during ischemia are critical in the development of left ventricular dysfunction and that opening of mitoKATP channels, at least in part, contributes to cardioprotection produced by Ras-GTPase inhibition. Copyright © 2006 John Wiley & Sons, Ltd. [source] |