Home About us Contact | |||
Tree Recruitment (tree + recruitment)
Selected AbstractsEffects of the Surrounding Matrix on Tree Recruitment in Amazonian Forest FragmentsCONSERVATION BIOLOGY, Issue 3 2006HENRIQUE E. M. NASCIMENTO efectos de borde; especies pioneras; fragmentación de bosques; bosque lluvioso Abstract:,Little is known about how the surrounding modified matrix affects tree recruitment in fragmented forests. We contrasted effects of two different matrix types, Vismia - and Cecropia -dominated regrowth, on recruitment of pioneer tree species in forest fragments in central Amazonia. Our analyses were based on 22, 1-ha plots in seven experimental forest fragments ranging in size from 1 to 100 ha. By 13 to 17 years after fragmentation, the population density of pioneer trees was significantly higher in plots surrounded by Vismia regrowth than in plots surrounded by Cecropia regrowth, and the species composition and dominance of pioneers differed markedly between the two matrix types. Cecropia sciadophylla was the most abundant pioneer in fragments surrounded by Cecropia regrowth (constituting nearly 50% of all pioneer trees), whereas densities of species in Vismia -surrounded fragments were distributed more evenly. Thus the surrounding matrix had a strong influence on patterns of tree recruitment in Amazonian forest fragments. Resumen:,Se conoce poco del efecto de la matriz modificada circundante sobre el reclutamiento de árboles en bosques fragmentados. Contrastamos los efectos de dos tipos diferentes de matriz, vegetación secundaria dominada por Vismia- y Cecropia-, sobre el reclutamiento de especies de árboles pioneros en fragmentos de bosque en la Amazonía central. Nuestros análisis se basaron en 22 parcelas de 1 ha en siete fragmentos de bosque experimentales que varían entre 1 y 1000 ha. Entre 13 y 17 años después de la fragmentación, la densidad poblacional de árboles pioneros era significativamente mayor en parcelas rodeados por Vismia que en las parcelas rodeadas por Cecropia, y la composición y dominancia de especies pioneras fueron marcadamente diferentes en cada tipo de matriz. Cecropia sciadophylla fue la pionera más abundante en fragmentos rodeados por Cecropia (constituyó casi 50% de todos los árboles pioneros), mientras que las densidades de especies en los fragmentos rodeados por Vismia se distribuyeron más homogéneamente. Por lo tanto, la matriz circundante tiene una fuerte influencia sobre los patrones de reclutamiento de árboles en fragmentos de bosque Amazónicos. [source] Low Recruitment of Trees Dispersed by Animals in African Forest FragmentsCONSERVATION BIOLOGY, Issue 6 2001N. J. Cordeiro We compared adult and juvenile trees in forest transects in a 3500,ha submontane forest with those in four forest fragments of 521, 30, 9, and 0.5 ha. Preliminary results show that recruitment of seedlings and juveniles of 31 animal-dispersed tree species was more than three times greater in continuous forest and large forest fragments (,30 ha) than in small forest fragments (,9 ha), whereas recruitment of eight wind- and gravity-dispersed trees of the forest interior was unaffected. Recruitment of 10 endemic, animal-dispersed tree species was 40 times lower in small fragments than in continuous forest or large fragments. Counts of diurnal primates and birds in all five sites indicated that frugivorous species have declined with decreasing fragment size. These results are consistent with the idea that loss of dispersal agents depresses tree recruitment in the course of forest fragmentation. Resumen: Investigamos los efectos de la fragmentación del bosque en la desaparición de animales frugívoros y el reclutamiento de árboles dispersados por animales y viento en parches de bosques de 80 años de edad en las montañas del este de Usambara, Tanzania. Comparamos árboles adultos y juveniles en transectos de bosque en un bosque submontañoso de 3500 ha con transectos de cuatro fragmentos de bosque de 521, 30, 9 y 0.5 ha. Los resultados preliminares muestran que el reclutamiento de plántulas y juveniles especies de árboles dispersados por animales fue tres veces mayor en el bosque continuo y fragmentos grandes (,30 ha) que en fragmentos pequeños (,9 ha), mientras que el reclutamiento de ocho árboles dispersados por viento y gravedad del interior del bosque no fue afectado. El reclutamiento de 10 especies endémicas de árboles dispersados por animales fue 40 veces menor en los fragmentos pequeños que en el bosque continuo o en los fragmentos grandes. Los conteos de primates diurnos y aves en los cinco sitios indican que las especies frugívoras han disminuido con la disminución del tamaño del fragmento. Estos resultados son consistentes con la idea de que la pérdida de los agentes dispersores deprime el reclutamiento de los árboles en el transcurso de la fragmentación del bosque. [source] Herbivory and plant growth rate determine the success of El Niño Southern Oscillation-driven tree establishment in semiarid South AmericaGLOBAL CHANGE BIOLOGY, Issue 12 2006MILENA HOLMGREN Abstract While climatic extremes are predicted to increase with global warming, we know little about the effect of climatic variability on biome distribution. Here, we show that rainy El Niño Southern Oscillation (ENSO) events can enhance tree recruitment in the arid and semiarid ecosystems of north-central Chile and northwest Peru. Tree-ring studies in natural populations revealed that rainy El Niño episodes have triggered forest regeneration in Peru. Field experiments indicate that tree seedling recruitment in Chile is much less successful than in Peru due mostly to larger mortality caused by herbivores. The dramatic impact of herbivores in Chile was derived from the combined result of slower plant growth and the presence of exotic herbivores (European rabbits and hares). The interplay of herbivory and climatic effects we demonstrated implies that rainy ENSO events may represent ,windows of opportunity' for forest recovery if herbivore pressure is minimized at the right moment. [source] Spatial patterns of tree recruitment in a relict population of Pinus uncinata: forest expansion through stratified diffusionJOURNAL OF BIOGEOGRAPHY, Issue 11 2005J. Julio Camarero Abstract Aim, To infer future changes in the distribution of isolated relict tree populations at the limit of a species' geographical range, a deep understanding of the regeneration niche and the spatial pattern of tree recruitment is needed. Location, A relict Pinus uncinata population located at the south-western limit of distribution of the species in the Iberian System of north-eastern Spain. Methods,Pinus uncinata individuals were mapped within a 50 × 40-m plot, and their size, age and reproductive status were estimated. Data on seed dispersal were obtained from a seed-release experiment. The regeneration niche of the species was assessed based on the associations of seedling density with substrate and understorey cover. The spatial pattern of seedlings was described using point-pattern (Ripley's K) and surface-pattern (correlograms, Moran's I) analyses. Statistical and inverse modelling were used to characterize seedling clustering. Results, Pine seedlings appeared aggregated in 6-m patches. Inverse modelling estimated a longer mean dispersal distance (27 m), which corresponded to the size of a large cluster along the north to north-eastward direction paralleled by an eastward trend of increasing seedling age. The two spatial scales of recruitment were related to two dispersal processes. The small-scale clustering of seedlings was due to local seed dispersal in open areas near the edge of Calluna vulgaris mats: the regeneration niche. The long-range expansion might be caused by less frequent medium-distance dispersal events due to the dominant north-westerly winds. Main conclusions, To understand future range shifts of marginal tree populations, data on seed dispersal, regeneration niche and spatial pattern of recruitment at local scales should be obtained. The monitoring of understorey communities should be a priority in order to predict correctly shifts in tree species range in response to global warming. [source] Growth responses of African savanna trees implicate atmospheric [CO2] as a driver of past and current changes in savanna tree coverAUSTRAL ECOLOGY, Issue 4 2010BARNEY S. KGOPE Abstract Atmospheric CO2 has more than doubled since the last glacial maximum (LGM) and could double again within this century, largely due to anthropogenic activity. It has been suggested that low [CO2] contributed to reduced tree cover in savanna and grassland biomes at LGM, and that increasing [CO2] over the last century promoted increases in woody plants in these ecosystems over the past few decades. Despite the implications of this idea for understanding global carbon cycle dynamics and key global role of the savanna biome, there are still very few experimental studies quantifying the effects of CO2 on tree growth and demography in savannas and grasslands. In this paper we present photosynthetic, growth and carbon allocation responses of African savanna trees (Acacia karroo and Acacia nilotica) and a C4 grass, Themeda triandra, exposed to a gradient of CO2 concentrations from 180 (typical of LGM) to 1000 µmol mol,1 in open-top chambers in a glasshouse as a first empirical test of this idea. Photosynthesis, total stem length, total stem diameter, shoot dry weight and root dry weight of the acacias increased significantly across the CO2 gradient, saturating at higher CO2 concentrations. After clipping to simulate fire, plants showed an even greater response in total stem length, total stem diameter and shoot dry weight, signalling the importance of re-sprouting following disturbances such as fire or herbivory in savanna systems. Root starch (per unit root mass and total root starch per plant) increased steeply along the CO2 gradient, explaining the re-sprouting response. In contrast to the strong response of tree seedlings to the CO2 gradient, grass productivity showed little variation, even at low CO2 concentrations. These results suggest that CO2 has significant direct effects on tree recruitment in grassy ecosystems, influencing the ability of trees to recover from fire damage and herbivory. Fire and herbivore regimes that were effective in controlling tree increases in grassy ecosystems could thus be much less effective in a CO2 -rich world, but field-based tests are needed to confirm this suggestion. [source] Spatial distribution and prediction of seed production by Eucalyptus microcarpa in a fragmented landscapeAUSTRAL ECOLOGY, Issue 1 2010PETER A. VESK Abstract Woodlands worldwide have been greatly modified by clearing for agriculture, and their conservation and restoration requires understanding of tree recruitment processes. Seed production is one possible point of recruitment failure, and one that the spatial arrangement of trees may affect. We sampled 118 Eucalyptus microcarpa (Myrtaceae) trees to compare and analyse the determinants of seed production in this dominant tree of modified, fragmented temperate grassy woodlands, which extend over much of southeastern Australia. Fecundity was estimated as the seed crop measured on leaf mass and whole tree bases and was compared between categories of tree configuration. We also modelled fecundity using boosted regression trees, a new and flexible tool. Fecundity on a leaf mass basis was predominantly influenced by environmental factors (topographic ,wetness', slope, soil type), rather than by local tree density and configuration. Fewer seed per unit leaf mass were produced on flat and topographically wet sites, reflecting poor tolerance of waterlogging by E. microcarpa. By contrast, whole tree fecundity was little influenced by environmental factors. Local tree density and configuration did influence whole tree fecundity, which was high in solitary and woodland-spaced trees and reduced under high local density. We found little evidence for reduced fecundity of E. microcarpa in solitary trees. This points to the importance of scattered trees as sources of seed for tree recruitment and for natural regeneration of landscape level tree cover. Considerable uncertainty remains in modelled seed supply, and may be reduced with sampling across multiple years and greater environmental and spatial domains. [source] Land crabs as key drivers in tropical coastal forest recruitmentBIOLOGICAL REVIEWS, Issue 2 2009Erin Stewart Lindquist ABSTRACT Plant populations are regulated by a diverse assortment of abiotic and biotic factors that influence seed dispersal and viability, and seedling establishment and growth at the microsite. Rarely does one animal guild exert as significant an influence on different plant assemblages as land crabs. We review three tropical coastal ecosystems,mangroves, island maritime forests, and mainland coastal terrestrial forests,where land crabs directly influence forest composition by limiting tree establishment and recruitment. Land crabs differentially prey on seeds, propagules and seedlings along nutrient, chemical and physical environmental gradients. In all of these ecosystems, but especially mangroves, abiotic gradients are well studied, strong and influence plant species distributions. However, we suggest that crab predation has primacy over many of these environmental factors by acting as the first limiting factor of tropical tree recruitment to drive the potential structural and compositional organisation of coastal forests. We show that the influence of crabs varies relative to tidal gradient, shoreline distance, canopy position, time, season, tree species and fruiting periodicity. Crabs also facilitate forest growth and development through such activities as excavation of burrows, creation of soil mounds, aeration of soils, removal of leaf litter into burrows and creation of carbon-rich soil microhabitats. For all three systems, land crabs influence the distribution, density and size-class structure of tree populations. Indeed, crabs are among the major drivers of tree recruitment in tropical coastal forest ecosystems, and their conservation should be included in management plans of these forests. [source] |