Home About us Contact | |||
Tree Density (tree + density)
Selected AbstractsThe Influence of Large Tree Density on Howler Monkey (Alouatta palliata mexicana) Presence in Very Small Rain Forest FragmentsBIOTROPICA, Issue 6 2007Víctor Arroyo-Rodríguez First page of article [source] Tree spacing and area of competitive influence do not scale with tree size in an African rain forestJOURNAL OF VEGETATION SCIENCE, Issue 5 2008Michael J. Lawes Abstract Questions: Is the area of influence of individual trees determined by tree size? Does competition, inferred from spatial pattern between neighbouring trees, affect adult tree spacing patterns in an tropical forest? At what size-class or stage is competition between neighbours most likely to affect adult tree spacing patterns? Location: Kibale National Park, western Uganda. Methods: Relationships between focal tree size and nearest neighbour distance, size, density, and species in a 4-ha permanent plot, using point pattern analyses. Results: We found non-random patterns of distribution of nearest tree neighbours (stems > 10 cm DBH). Independent of identity, tree density was highest and neighbours were regularly spaced within 3,5m of an individual. Tree densities were lower and relatively constant at distances >5m and neighbours were typically randomly spaced. In general, conspecific patterns conformed to the latter trends. Thus, individual area of influence was small (within a radius of 3,5 m). Rarer species were more clumped than common species. Weak competitive thinning occurred among more densely packed small trees (<20 cm DBH), and rapidly disappeared with increasing tree size and distance from an individual. The clumping and density of individuals was not significantly affected by tree size. Conclusions: Negative effects of competition among trees are weak, occur within the crown radius of most individuals, and are independent of adult tree size and identity. The density of neighbouring trees (aggregation) did not decline with increasing focal tree size at either the conspecific or the community level and tree diameter (tree size) was not a good estimator of the implied competitive influence of a tree. Mechanisms operating at the recruitment stage may be important determinants of adult tree community diversity and spacing patterns. [source] Effects of repeated burning on species richness in a Florida pine savanna: A test of the intermediate disturbance hypothesisJOURNAL OF VEGETATION SCIENCE, Issue 1 2000Brian Beckage Wunderlin (1982) except for Aristida beyrichiana; which follows Peet (1993). Vouchers for each species were collected and deposited at the University of Central Florida herbarium Abstract. We studied the effect of burning frequency on the density and species richness of understory flowering stems in a Florida sandhill. Flowering stems were censused weekly for 54 weeks in six sites that had been burned one to six times in the previous 16 years. We concurrently measured overstory characteristics such as species composition, density and basal area. We used maximum likelihood and Akaike's Information Criterion to compare linear, quadratic, saturating, and null models of community response to repeating burning. We did not find a relationship between species richness, diversity or flowering stem density and fire frequency. Tree density was related to fire frequency and may represent an indirect pathway for fire effects on understory characteristics. While we found no support for the Intermediate Disturbance Hypothesis, an analysis of our experimental design indicated that we had low statistical power. We develop the hypothesis that a saturating model of response to fire best describes understory species richness in our system. We test this hypothesis using the most extensive published fire data set we are aware of and find support for a saturating model. [source] Landscape structure influences tree density patterns in fragmented woodlands in semi-arid eastern AustraliaAUSTRAL ECOLOGY, Issue 6 2009VALERIE J. DEBUSE Abstract Landscape and local-scale influences are important drivers of plant community structure. However, their relative contribution and the degree to which they interact remain unclear. We quantified the extent to which landscape structure, within-patch habitat and their confounding effects determine post-clearing tree densities and composition in agricultural landscapes in eastern subtropical Australia. Landscape structure (incorporating habitat fragmentation and loss) and within-patch (site) features were quantified for 60 remnant patches of Eucalyptus populnea (Myrtaceae) woodland. Tree density and species for three ecological maturity classes (regeneration, early maturity, late maturity) and local site features were assessed in one 100 × 10 m plot per patch. All but one landscape characteristic was determined within a 1.3-km radius of plots; Euclidean nearest neighbour distance was measured inside a 5-km radius. Variation in tree density and composition for each maturity class was partitioned into independent landscape, independent site and joint effects of landscape and site features using redundancy analysis. Independent site effects explained more variation in regeneration density and composition than pure landscape effects; significant predictors were the proportion of early and late maturity trees at a site, rainfall and the associated interaction. Conversely, landscape structure explained greater variation in early and late maturity tree density and composition than site predictors. Area of remnant native vegetation within a landscape and patch characteristics (area, shape, edge contrast) were significant predictors of early maturity tree density. However, 31% of the explained variation in early mature tree differences represented confounding influences of landscape and local variables. We suggest that within-patch characteristics are important in influencing semi-arid woodland tree regeneration. However, independent and confounding effects of landscape structure resulting from previous vegetation clearing may have exerted a greater historical influence on older cohorts and should be accounted for when examining woodland dynamics across a broader range of environments. [source] An Ecological and Economic Assessment of the Nontimber Forest Product Gaharu Wood in Gunung Palung National Park, West Kalimantan, IndonesiaCONSERVATION BIOLOGY, Issue 6 2001Gary D. Paoli We studied the demographic effect and economic returns of harvesting aromatic gaharu wood from fungus-infected trees of Aquilaria malaccensis Lam. at Gunung Palung National Park, Indonesia, to evaluate the management potential of gaharu wood. Aquilaria malaccensis trees openface> 20 cm in diameter occurred at low preharvest densities (0.16,0.32 ha) but were distributed across five of six forest types surveyed. During a recent harvest, 75% of trees were felled, with harvest intensities ranging from 50% to 100% among forest types. Overall, 50% of trees contained gaharu wood, but trees at higher elevations contained gaharu wood more frequently ( 73%) than trees at lower elevation (27%). The mean density of regeneration ( juveniles> 15 cm in height) near adult trees (3,7 m away) was 0.2/m2, 200 times greater than at random in the forest (10/ha), but long-term data on growth and survivorship are needed to determine whether regeneration is sufficient for population recovery. Gaharu wood extraction from Gunung Palung was very profitable for collectors, generating an estimated gross financial return per day of US $8.80, triple the mean village wage. Yet, the estimated sustainable harvest of gaharu wood at natural tree densities generates a mean net present value of only $10.83/ha, much lower than that of commercial timber harvesting, the dominant forest use in Kalimantan. Returns per unit area could be improved substantially, however, by implementing known silvicultural methods to increase tree densities, increase the proportion of trees that produce gaharu wood, and shorten the time interval between successive harvests. The economic potential of gaharu wood is unusual among nontimber forest products and justifies experimental trials to develop small-scale cultivation methods. Resumen: Datos ecológicos y económicos son esenciales para la identificación de productos forestales no maderables tropicales con potencial para la extracción sostenible y rentable en un sistema bajo manejo. Estudiamos el efecto demográfico y los beneficios económicos de la cosecha de la madera aromática gaharu de árboles de Aquilaria malaccenis Lam infectados por hongos en el Parque Nacional Gunung Palung Indonesia para evaluar el potencial de manejo de la madera. Arboles de Aquilaria malaccenis> 20 cm de diámetro ocurrieron en bajas densidades precosecha (0.16,0.32 ha,1) pero se distribuyeron en cinco de los seis tipos de bosque muestreados. Durante una cosecha reciente, 75% de los árboles fueron cortados, con intensidades de cosecha entre 50 y 100% en los tipos de bosque. En conjunto, 50% de los árboles contenían madera gaharu, pero árboles de elevaciones mayores contenían madera gaharu más frecuentemente ( 73%) que árboles de elevaciones menores (27%). La densidad promedio de regeneración ( juveniles> 15 cm de altura) cerca de árboles adultos (de 3 a 7 m de distancia) fue de 0.2 m,2, 200 veces mayor que en el bosque (10 ha,1), pero se requieren datos a largo plazo sobre el crecimiento y la supervivencia para determinar si la regeneración es suficiente para la recuperación de la población. La extracción de madera gaharu de Gunung Palung fue muy redituable, generando un rendimiento financiero bruto estimado en US $8.80 diarios, el triple del salario promedio en la zona. Sin embargo, la cosecha sostenible estimada de madera gaharu en densidades naturales de árboles genera un valor presente neto de sólo $10.83 ha,1, mucho menor que el de la cosecha comercial de madera, uso dominante del bosque en Kalimantan. Sin embargo, los rendimientos por unidad de área podrían mejorar sustancialmente mediante la instrumentación de métodos silviculturales para incrementar la densidad de árboles, incrementar la proporción de árboles que producen madera gaharu y reducir el intervalo de tiempo entre cosechas sucesivas. El potencial económico de la madera gaharu es poco usual entre los productos forestales no maderables y justifica la experimentación para desarrollar métodos de cultivo en pequeña escala. [source] Exploration correlates with settlement: red squirrel dispersal in contrasting habitatsJOURNAL OF ANIMAL ECOLOGY, Issue 6 2004DIANE L. HAUGHLAND Summary 1Dispersers in heterogeneous habitat theoretically should target the habitat(s) where reproduction and survival (i.e. fitness) will be highest. However, the cues that dispersing animals respond to are not well understood: differences in habitat quality ultimately may be important, but whether animals respond to these differences may be influenced by their own familiarity with different habitats. 2To determine if dispersers reacted to differences in habitat, we documented the exploratory movements, dispersal, and settlement patterns of juvenile North American red squirrels (Tamiasciurus hudsonicus) originating in adjacent patches of different habitats. 3Dispersers originating in mature, closed-canopy forest (linked to higher female reproductive success and smaller territories) did not explore contrasting open forest with lower tree densities, and the magnitude of the dispersers' explorations was relatively similar. In contrast, dispersers from the open forest habitat made explorations that carried them into contrasting, mature forest habitat, and their explorations were more variable across individuals. 4When settlement occurred, it was strongly philopatric in all groups of dispersers, although the distances and directions favoured during the exploratory phase of dispersal remained strong predictors of where settlement occurred. Overall, processes favouring philopatry (i.e. maternal influences, competitive advantages, etc.) appeared to dominate the dispersal of our study animals, even those that were exposed to higher quality habitat during their explorations. 5Secondarily, annual stochasticity (or some correlate) affected the scale of exploration and timing of settlement more than the relative quality of habitat in which dispersers were born. 6Studies such as this that seek to understand the relative importance of individual experience, habitat familiarity, and habitat quality are important to ultimately understanding how individual animals and populations react to habitat heterogeneity. [source] Abiotic and biotic drivers of seedling survival in a hurricane-impacted tropical forestJOURNAL OF ECOLOGY, Issue 6 2009Liza S. Comita Summary 1. ,Many forests experience periodic, large-scale disturbances, such as hurricanes and cyclones, which open the forest canopy, causing dramatic changes in understorey light conditions and seedling densities. Thus, in hurricane-impacted forests, large variations in abiotic and biotic conditions likely shape seedling dynamics, which in turn will contribute to patterns of forest recovery. 2. ,We monitored 13 836 seedlings of 82 tree and shrub species over 10 years following Hurricane Georges in 1998 in a subtropical, montane forest in Puerto Rico. We quantified changes in the biotic and abiotic environment of the understorey and linked seedling dynamics to changes in canopy openness and seedling density, and to spatial variation in soil type, topography and tree density. 3. ,Canopy openness was highest when first measured after Hurricane Georges and dropped significantly within c. 3 years, while seedling densities remained high for c. 5 years post-hurricane. When all species and census intervals were analysed together, generalized linear mixed effects models revealed that canopy openness, seedling and adult tree densities were significant drivers of seedling survival. 4. ,The relative importance of abiotic and biotic factors changed over time. Separate analyses for each census interval revealed that canopy openness was a significant predictor of survival only for the first census interval, with lower survival at the highest levels of canopy openness. The effect of conspecific seedling density was significant in all intervals except the first, and soil type only in the final census interval. 5. ,When grouping species into life-history guilds based on adult tree susceptibility to hurricane damage, we found clear differences among guilds in the effects of biotic and abiotic factors on seedling survival. Seedlings of hurricane-susceptible and intermediate guilds were more strongly influenced by canopy openness, while seedlings of the hurricane-resistant group were less affected by conspecific seedling density. Individual species-level analyses for 12 common species, however, showed considerable variation among species within guilds. 6. ,Synthesis. Our results suggest that hurricanes shape species composition by altering understorey conditions that differentially influence the success of seedlings. Thus, predicted increases in the intensity and frequency of hurricanes in the Caribbean will likely alter seedling dynamics and ultimately the species composition in hurricane-impacted forests. [source] Fine-scale genetic structure and gene dispersal inferences in 10 Neotropical tree speciesMOLECULAR ECOLOGY, Issue 2 2006OLIVIER J. HARDY Abstract The extent of gene dispersal is a fundamental factor of the population and evolutionary dynamics of tropical tree species, but directly monitoring seed and pollen movement is a difficult task. However, indirect estimates of historical gene dispersal can be obtained from the fine-scale spatial genetic structure of populations at drift,dispersal equilibrium. Using an approach that is based on the slope of the regression of pairwise kinship coefficients on spatial distance and estimates of the effective population density, we compare indirect gene dispersal estimates of sympatric populations of 10 tropical tree species. We re-analysed 26 data sets consisting of mapped allozyme, SSR (simple sequence repeat), RAPD (random amplified polymorphic DNA) or AFLP (amplified fragment length polymorphism) genotypes from two rainforest sites in French Guiana. Gene dispersal estimates were obtained for at least one marker in each species, although the estimation procedure failed under insufficient marker polymorphism, limited sample size, or inappropriate sampling area. Estimates generally suffered low precision and were affected by assumptions regarding the effective population density. Averaging estimates over data sets, the extent of gene dispersal ranged from 150 m to 1200 m according to species. Smaller gene dispersal estimates were obtained in species with heavy diaspores, which are presumably not well dispersed, and in populations with high local adult density. We suggest that limited seed dispersal could indirectly limit effective pollen dispersal by creating higher local tree densities, thereby increasing the positive correlation between pollen and seed dispersal distances. We discuss the potential and limitations of our indirect estimation procedure and suggest guidelines for future studies. [source] Landscape structure influences tree density patterns in fragmented woodlands in semi-arid eastern AustraliaAUSTRAL ECOLOGY, Issue 6 2009VALERIE J. DEBUSE Abstract Landscape and local-scale influences are important drivers of plant community structure. However, their relative contribution and the degree to which they interact remain unclear. We quantified the extent to which landscape structure, within-patch habitat and their confounding effects determine post-clearing tree densities and composition in agricultural landscapes in eastern subtropical Australia. Landscape structure (incorporating habitat fragmentation and loss) and within-patch (site) features were quantified for 60 remnant patches of Eucalyptus populnea (Myrtaceae) woodland. Tree density and species for three ecological maturity classes (regeneration, early maturity, late maturity) and local site features were assessed in one 100 × 10 m plot per patch. All but one landscape characteristic was determined within a 1.3-km radius of plots; Euclidean nearest neighbour distance was measured inside a 5-km radius. Variation in tree density and composition for each maturity class was partitioned into independent landscape, independent site and joint effects of landscape and site features using redundancy analysis. Independent site effects explained more variation in regeneration density and composition than pure landscape effects; significant predictors were the proportion of early and late maturity trees at a site, rainfall and the associated interaction. Conversely, landscape structure explained greater variation in early and late maturity tree density and composition than site predictors. Area of remnant native vegetation within a landscape and patch characteristics (area, shape, edge contrast) were significant predictors of early maturity tree density. However, 31% of the explained variation in early mature tree differences represented confounding influences of landscape and local variables. We suggest that within-patch characteristics are important in influencing semi-arid woodland tree regeneration. However, independent and confounding effects of landscape structure resulting from previous vegetation clearing may have exerted a greater historical influence on older cohorts and should be accounted for when examining woodland dynamics across a broader range of environments. [source] Neighbour-regulated mortality: the influence of positive and negative density dependence on tree populations in species-rich tropical forestsECOLOGY LETTERS, Issue 8 2003Halton A. Peters Abstract Density-dependent mortality has long been posited as a possible mechanism for the regulation of tropical forest tree density. Despite numerous experimental and phenomenological investigations, the extent to which such mechanisms operate in tropical forests remains unresolved because the demographical signature of density dependence has rarely been found in extensive investigations of established trees. This study used an individual-based demographical approach to investigate the role of conspecific and heterospecific neighbourhood crowding on tree mortality in a Panamanian and a Malayan tropical forest. More than 80% of the species investigated at each site were found to exhibit density-dependent mortality. Furthermore, most of these species showed patterns of mortality consistent with the Janzen,Connell hypothesis and the rarely explored hypothesis of species herd protection. This study presents some of the first evidence of species herd protection operating in tree communities. [source] Modeling the effects of fire and climate change on carbon and nitrogen storage in lodgepole pine (Pinus contorta) standsGLOBAL CHANGE BIOLOGY, Issue 3 2009E. A. H. SMITHWICK Abstract The interaction between disturbance and climate change and resultant effects on ecosystem carbon (C) and nitrogen (N) fluxes are poorly understood. Here, we model (using CENTURY version 4.5) how climate change may affect C and N fluxes among mature and regenerating lodgepole pine (Pinus contorta var. latifolia Engelm. ex S. Wats.) stands that vary in postfire tree density following stand-replacing fire. Both young (postfire) and mature stands had elevated forest production and net N mineralization under future climate scenarios relative to current climate. Forest production increased 25% [Hadley (HAD)] to 36% [Canadian Climate Center (CCC)], compared with 2% under current climate, among stands that varied in stand age and postfire density. Net N mineralization increased under both climate scenarios, e.g., +19% to 37% (HAD) and +11% to 23% (CCC), with greatest increases for young stands with sparse tree regeneration. By 2100, total ecosystem carbon (live+dead+soils) in mature stands was higher than prefire levels, e.g., +16% to 19% (HAD) and +24% to 28% (CCC). For stands regenerating following fire in 1988, total C storage was 0,9% higher under the CCC climate model, but 5,6% lower under the HAD model and 20,37% lower under the Control. These patterns, which reflect variation in stand age, postfire tree density, and climate model, suggest that although there were strong positive responses of lodgepole pine productivity to future changes in climate, C flux over the next century will reflect complex relationships between climate, age structure, and disturbance-recovery patterns of the landscape. [source] Simulating vegetation processes along the Kalahari transectGLOBAL CHANGE BIOLOGY, Issue 3 2004F. I. Woodward Abstract The Sheffield Dynamic Global Vegetation Model has simulated the structure and net carbon exchange of vegetation at five sites along the Kalahari transect where there is a strong gradient in precipitation from 299 to 918 mm yr,1. There has been a decline in precipitation of 8 mm yr,1 along the whole of the transect since about 1970. Simulations of vegetation dynamics and structure indicate that this decline has exerted a notable effect on the vegetation, with reductions in woody plant cover at the dry end of the transect and reductions in tree density at the wetter end. These changes were driven primarily by reductions in the net primary production and increased rates of mortality, with rather small impacts of fire. [source] Assessing factors that influence spatial variations in duff moistureHYDROLOGICAL PROCESSES, Issue 15 2008L. D. Raaflaub Abstract Patterns and spatial variations in the moisture of the decomposing organic matter on the forest floor (the duff) of a montane forest were analysed in an effort to determine the primary factors shaping these patterns. Above and below canopy meteorological conditions were monitored to determine the influence of canopy cover on duff moisture. The spatial and temporal distributions of duff moisture were assessed through daily duff moisture measurements collected at regular intervals in ten 10 × 10 m plots representing a variety of canopy types and densities. Meteorological conditions ranged from very wet to very dry and resulted in duff moisture variations that were more pronounced during wet periods than in extended periods of drying. Investigations on the influence of canopy type, tree density, and tree proximity on duff moisture patterns indicated that canopy type and tree proximity are the most important factors affecting duff moisture. Interception seems to be the primary controller of duff moisture patterns with an influence at the centimetre scale. Copyright © 2008 John Wiley & Sons, Ltd. [source] Forest progression modes in littoral Congo, Central Atlantic AfricaJOURNAL OF BIOGEOGRAPHY, Issue 9 2004Charly Favier Abstract Aim, To understand the persistence of a forest,savanna mosaic in places where rainfall data suggest that forest take-over should take place. To study the various modes of forest encroachment, and the role of human activities to hamper it. Location, Data were collected on several forest,savanna ecotones in the coastal region of the Republic of Congo. The sites were chosen to illustrate the differing principal modes of forest expansion, corresponding to different levels of anthropic pressure. Methods, The study sites were situated on five transects perpendicular to the ecotone (total sampled area: 1.7 ha) and 10 forest clumps in savanna (with diameters from 3 to 20 m). Along the transects botanical identification, diameter measurement and cartography were performed, while leaf area index was measured at a high resolution (every metre) along two of them. Collected data were analysed using a continuous quantification approach, which is much more useful than classical quadrat analysis. Time calibration of progression rates was performed using a simple model of the growth of the characteristic pioneer species, Aucoumea klaineana. Results, The two main different modes are reflected in different successional patterns. The edge diffusion is slow (its rate is evaluated to c. 1 m year,1) and is characterized by a progressive increase in large-diameter tree density and shade-tolerant tree density away from the ecotone. Conversely, savanna to forest phase transition by coalescence of clumps exhibits high tree density remnants distributed in established forest. The composition of these remnants is compatible with that of the forest clumps in savannas. Main conclusions, Three functional groups of pioneer trees are distinguished: some occupy the edge (edge pioneer), others establish clumps of forest in savanna (clump pioneers) and the longer-living A. klaineana ensures the transition to ,mature' forest. The two different observed patterns (linear edge progression and clump coalescence) can be understood with the use of a model of forest,savanna dynamics, ,FORSAT'. The two control parameters are the annual rainfall and the frequency of man-made fires in each savanna. In particular, an increase in the fire frequency can lead to a shift from the coalescence regime to the edge progression one. [source] Californian mixed-conifer forests under unmanaged fire regimes in the Sierra San Pedro Mártir, Baja California, MexicoJOURNAL OF BIOGEOGRAPHY, Issue 1 2000R. A. Minnich Abstract Aim,This study appraises historical fire regimes for Californian mixed-conifer forests of the Sierra San Pedro Mártir (SSPM). The SSPM represents the last remaining mixed-conifer forest along the Pacific coast still subject to uncontrolled, periodic ground fire. Location,The SSPM is a north,south trending fault bound range, centred on 31°N latitude, 100 km SE of Ensenada, Baja California. Methods,We surveyed forests for composition, population structure, and historical dynamics both spatially and temporally over the past 65 years using repeat aerial photographs and ground sampling. Fire perimeter history was reconstructed based on time-series aerial photographs dating from 1942 to 1991 and interpretable back to 1925. A total of 256 1-ha sites randomly selected from aerial photographs were examined along a chronosequence for density and cover of canopy trees, density of snags and downed logs, and cover of non-conifer trees and shrubs. Twenty-four stands were sampled on-the-ground by a point-centred quarter method which yielded data on tree density, basal area, frequency, importance value, and shrub and herb cover. Results,Forests experience moderately intense understory fires that range in size to 6400 ha, as well as numerous smaller, low intensity burns with low cumulative spatial extent. SSPM forests average 25,45% cover and 65,145 trees per ha. Sapling densities were two to three times that of overstory trees. Size-age distributions of trees , 4 cm dbh indicate multi-age stands with steady-state dynamics. Stands are similar to Californian mixed conifer forests prior to the imposition of fire suppression policy. Livestock grazing does not appear to be suppressing conifer regeneration. Main conclusions,Our spatially-based reconstruction shows the open forest structure in SSPM to be a product of infrequent, intense surface fires with fire rotation periods of 52 years, rather than frequent, low intensity fires at intervals of 4,20 years proposed from California fire-scar dendrochronology (FSD) studies. Ground fires in SSPM were intense enough to kill pole-size trees and a significant number of overstory trees. We attribute long fire intervals to the gradual build-up of subcontinuous shrub cover, conifer recruitment and litter accumulation. Differences from photo interpretation and FSD estimates are due to assumptions made with respect to site-based (point) sampling of fire, and nonfractal fire intensities along fire size frequency distributions. Fire return intervals determined by FSD give undue importance to local burns which collectively use up little fuel, cover little area, and have little demographic impact on forests. [source] Cordia millenii: on the risk of local extinction?AFRICAN JOURNAL OF ECOLOGY, Issue 3 2009Fred Babweteera Abstract Selective logging of valuable tropical timber trees is a conservation concern because it threatens the long-term sustainability of forests. However, there is insufficient information regarding the postlogging recovery of harvested species. Here, I assessed the seed dispersal patterns, recruitment and abundance of Cordia millenii, a valuable timber tree in two Ugandan tropical rain forests that have been subjected to varying disturbance regimes. The aim was to determine the vulnerability of Cordia in these forests. The rate of seed dispersal was lower in the heavily disturbed Mabira Forest compared with the less disturbed Budongo Forest. Frugivores in Mabira were small-bodied individuals that spat seeds beneath fruiting trees, whereas 90% of the fruit in Budongo was consumed by large-bodied chimpanzees that disperse seeds over long distances. Juveniles of Cordia were not found in the closed forest, although they were found in forest gaps in Budongo but not Mabira. Mature tree density was higher in Budongo compared with Mabira. Lack of effective seed dispersal coupled with the inability of seedlings of Cordia to establish under closed canopy account for the arrested recruitment in Mabira. Enrichment planting in felling gaps is necessary to avoid local extinction of Cordia in forests without large vertebrates. Résumé L'abattage sélectif des espèces précieuses d'arbres tropicaux inquiète le milieu de la conservation parce qu'il menace la durabilité des forêts à long terme. Cependant, il n'y a pas assez d'informations au sujet de la restauration des espèces prélevées après l'abattage. Ici, j'ai évalué les schémas de dispersion des semences, le recrutement et l'abondance de Cordia millenii, une espèce d'arbre prisée, dans deux forêts tropicales pluviales d'Ouganda qui ont été soumises à des régimes de perturbation variables. Le but était de déterminer la vulnérabilité de Cordia dans ces forêts. Le taux de dispersion des graines était plus faible dans la forêt très perturbée de Mabira que dans la forêt de Budongo, moins dérangée. Les frugivores de Mabira étaient des individus de petite taille qui recrachaient les graines sous les arbres producteurs des fruits alors que 90% des fruits de Budongo étaient consommés par des chimpanzés qui peuvent disperser les semences sur le longues distances. On n'a pas trouvé de juvénile de Cordia dans la forêt fermée; on en trouvait dans des clairières dans la forêt de Budongo, mais pas dans celle de Mabira. La densité des arbres matures était plus haute à Budongo qu'à Mabira. Le manque de dispersion efficace des graines, coupléà l'incapacité des semences de Cordia de s'établir sous une canopée fermée, intervient dans l'arrêt du recrutement à Mabira. Il est nécessaire de pratiquer un enrichissement des plantations dans les clairières déboisées pour éviter l'extinction locale des Cordia dans les forêts qui n'abritent pas de grands vertébrés. [source] Abiotic and biotic drivers of seedling survival in a hurricane-impacted tropical forestJOURNAL OF ECOLOGY, Issue 6 2009Liza S. Comita Summary 1. ,Many forests experience periodic, large-scale disturbances, such as hurricanes and cyclones, which open the forest canopy, causing dramatic changes in understorey light conditions and seedling densities. Thus, in hurricane-impacted forests, large variations in abiotic and biotic conditions likely shape seedling dynamics, which in turn will contribute to patterns of forest recovery. 2. ,We monitored 13 836 seedlings of 82 tree and shrub species over 10 years following Hurricane Georges in 1998 in a subtropical, montane forest in Puerto Rico. We quantified changes in the biotic and abiotic environment of the understorey and linked seedling dynamics to changes in canopy openness and seedling density, and to spatial variation in soil type, topography and tree density. 3. ,Canopy openness was highest when first measured after Hurricane Georges and dropped significantly within c. 3 years, while seedling densities remained high for c. 5 years post-hurricane. When all species and census intervals were analysed together, generalized linear mixed effects models revealed that canopy openness, seedling and adult tree densities were significant drivers of seedling survival. 4. ,The relative importance of abiotic and biotic factors changed over time. Separate analyses for each census interval revealed that canopy openness was a significant predictor of survival only for the first census interval, with lower survival at the highest levels of canopy openness. The effect of conspecific seedling density was significant in all intervals except the first, and soil type only in the final census interval. 5. ,When grouping species into life-history guilds based on adult tree susceptibility to hurricane damage, we found clear differences among guilds in the effects of biotic and abiotic factors on seedling survival. Seedlings of hurricane-susceptible and intermediate guilds were more strongly influenced by canopy openness, while seedlings of the hurricane-resistant group were less affected by conspecific seedling density. Individual species-level analyses for 12 common species, however, showed considerable variation among species within guilds. 6. ,Synthesis. Our results suggest that hurricanes shape species composition by altering understorey conditions that differentially influence the success of seedlings. Thus, predicted increases in the intensity and frequency of hurricanes in the Caribbean will likely alter seedling dynamics and ultimately the species composition in hurricane-impacted forests. [source] Soil phosphorus and disturbance influence liana communities in a subtropical montane forestJOURNAL OF VEGETATION SCIENCE, Issue 3 2010Agustina Malizia Abstract Questions: What are the effects of soil, topography, treefall gaps, tree species composition, and tree density on liana species composition and total liana abundance? Location: A 6-ha permanent plot in a subtropical montane forest in northwest Argentina. Methods: Multiple regressions were used to quantify associations of liana species composition and total liana abundance with edaphic, disturbance and tree community variables. Gradients in liana and tree species composition were quantified using principal components analysis (PCA). Results: Liana species composition was correlated most strongly with soil phosphorus concentration (R2=0.55). Total liana aanased with phosphorus and the density of recent treefall gaps (R2=0.60). Conclusions: In our study area, liana composition and abundance are most strongly correlated with features of the physical environment, rather than host tree characteristics. Our results support the hypothesis that recent increases in liana abundance in mature tropical forests may be related to increased rates of gap formation. [source] Tree spacing and area of competitive influence do not scale with tree size in an African rain forestJOURNAL OF VEGETATION SCIENCE, Issue 5 2008Michael J. Lawes Abstract Questions: Is the area of influence of individual trees determined by tree size? Does competition, inferred from spatial pattern between neighbouring trees, affect adult tree spacing patterns in an tropical forest? At what size-class or stage is competition between neighbours most likely to affect adult tree spacing patterns? Location: Kibale National Park, western Uganda. Methods: Relationships between focal tree size and nearest neighbour distance, size, density, and species in a 4-ha permanent plot, using point pattern analyses. Results: We found non-random patterns of distribution of nearest tree neighbours (stems > 10 cm DBH). Independent of identity, tree density was highest and neighbours were regularly spaced within 3,5m of an individual. Tree densities were lower and relatively constant at distances >5m and neighbours were typically randomly spaced. In general, conspecific patterns conformed to the latter trends. Thus, individual area of influence was small (within a radius of 3,5 m). Rarer species were more clumped than common species. Weak competitive thinning occurred among more densely packed small trees (<20 cm DBH), and rapidly disappeared with increasing tree size and distance from an individual. The clumping and density of individuals was not significantly affected by tree size. Conclusions: Negative effects of competition among trees are weak, occur within the crown radius of most individuals, and are independent of adult tree size and identity. The density of neighbouring trees (aggregation) did not decline with increasing focal tree size at either the conspecific or the community level and tree diameter (tree size) was not a good estimator of the implied competitive influence of a tree. Mechanisms operating at the recruitment stage may be important determinants of adult tree community diversity and spacing patterns. [source] Variation in vegetative water use in the savannas of the North Australian Tropical TransectJOURNAL OF VEGETATION SCIENCE, Issue 3 2002Garry D. Cook Abstract. The decline in tree density on sandy soils in savannas is highly correlated with declining mean annual rainfall along the North Australian Tropical Transect (NATT). We reanalyse various data on water use by individual trees and argue that a common relationship can be used to estimate annual water use by tree stands along the NATT from ca. 600 mm mean annual rainfall to at least 1600 mm. Where rainfall is less than 600 mm, trees of a given size use less water than at sites where rainfall is higher. We use these relationships to relate water use at the stand scale with mean annual rainfall along the NATT. From this we show that the empirical data imply that the minimum depth of sandy soil that needs to be exploited by trees declines with increasing aridity along the NATT from more than 5 m to less than 1 m. This finding is consistent with other observations and the pattern that with increasing aridity, an increasing proportion of rainfall coming from isolated storms rather than from periods of extended monsoon activity. [source] Ignorant seed predators and factors affecting the seed survival of a tropical palmOIKOS, Issue 1 2001Steven W. Brewer In addition to acting as seed predators, some terrestrial mammals bury seeds via scatter hoarding. This study system used two permanent plots in examining the interaction between small rodents and the seeds of the palm Astrocaryum mexicanum. We tested how experimental burial, and fruiting status of the parent, distance to the parent, seed size, and microsite characteristics affect the survival of these seeds. Up to 34% of the buried seeds that were exposed only to ignorant rodent foragers (individuals not responsible for burial) survived. In comparison, less than 1% of seeds buried by scatter hoarding rodents survived in previous studies, a percentage that is comparable to the low survival of unburied seeds in this study (<2%). Although unburied seeds had very low survival, increasing distance and/or seed density positively affected survival of unburied seeds. Distance to parent had no effect on buried seed survival. Buried seed survival was most strongly and significantly determined by the fruiting status of the trees under which they occurred. Seeds experienced significantly greater predation if buried under "parent" trees that fruited during the experiment. Buried seed survival was also negatively affected by germination, as germination may signal the presence of a seed to foraging rodents. There was some indication of a positive effect of tree density on seed survival between the two plots, whereas differences in rodent abundance appear to have no effect on seed survival. Seed size and microsite characteristics had no significant effect on buried seed survival, likely due to the greater proportional effects of other factors and the longevity of A. mexicanum seeds. The results of this study were used to generate a hypothetical causal network showing how comparatively low recovery of buried seeds by ignorant foragers , combined with processes determining the removal of scatter hoarding foragers from their scattered seed caches , may affect seedling recruitment in A. mexicanum. [source] Spatial distribution and prediction of seed production by Eucalyptus microcarpa in a fragmented landscapeAUSTRAL ECOLOGY, Issue 1 2010PETER A. VESK Abstract Woodlands worldwide have been greatly modified by clearing for agriculture, and their conservation and restoration requires understanding of tree recruitment processes. Seed production is one possible point of recruitment failure, and one that the spatial arrangement of trees may affect. We sampled 118 Eucalyptus microcarpa (Myrtaceae) trees to compare and analyse the determinants of seed production in this dominant tree of modified, fragmented temperate grassy woodlands, which extend over much of southeastern Australia. Fecundity was estimated as the seed crop measured on leaf mass and whole tree bases and was compared between categories of tree configuration. We also modelled fecundity using boosted regression trees, a new and flexible tool. Fecundity on a leaf mass basis was predominantly influenced by environmental factors (topographic ,wetness', slope, soil type), rather than by local tree density and configuration. Fewer seed per unit leaf mass were produced on flat and topographically wet sites, reflecting poor tolerance of waterlogging by E. microcarpa. By contrast, whole tree fecundity was little influenced by environmental factors. Local tree density and configuration did influence whole tree fecundity, which was high in solitary and woodland-spaced trees and reduced under high local density. We found little evidence for reduced fecundity of E. microcarpa in solitary trees. This points to the importance of scattered trees as sources of seed for tree recruitment and for natural regeneration of landscape level tree cover. Considerable uncertainty remains in modelled seed supply, and may be reduced with sampling across multiple years and greater environmental and spatial domains. [source] Habitat protection, cattle grazing and density-dependent reproduction in a desert treeAUSTRAL ECOLOGY, Issue 8 2009VALERIA ASCHERO Abstract Anthropogenic activities usually trigger changes in the population density of plants. Thus, land management practices can influence density-dependent demographic parameters and species interactions. We investigated plant-pollinator interactions and reproduction in Prosopis flexuosa, the largest tree species in the Central Monte desert of Argentina, an important economic and cultural resource for humans and a functionally prominent species. We hypothesized that reproductive output of P. flexuosa would be limited at low densities, and that exclusion of catle grazing would enhance population density and consequently interaction frequency with pollinators and reproductive success. The study was conducted in and around Ñacuñán Biosphere Reserve (Mendoza, Argentina), where cattle grazing has been excluded for over 35 years. Working in five pairs of protected and cattle grazed 1-ha plots, we recorded density of adult trees, pollinator visitation frequency to inflorescences and seeds per inflorescence in focal trees. Adult tree density was higher in protected plots than in cattle grazed plots. Density of reproductive trees was positively correlated with seed production, suggesting positive density dependence for reproduction (Allee effect). Pollinator visitation to inflorescences and seed production was higher in protected plots compared with plots under cattle grazing. Suppression of anthropogenic degradation has resulted in higher adult tree density in protected plots, indirectly higher pollinator visitation to inflorescences and higher reproductive success of trees. Increased frequency of plant-pollinator interactions and tree reproduction suggest success of management practices aimed at protecting P. flexuosa woodlands. [source] Landscape structure influences tree density patterns in fragmented woodlands in semi-arid eastern AustraliaAUSTRAL ECOLOGY, Issue 6 2009VALERIE J. DEBUSE Abstract Landscape and local-scale influences are important drivers of plant community structure. However, their relative contribution and the degree to which they interact remain unclear. We quantified the extent to which landscape structure, within-patch habitat and their confounding effects determine post-clearing tree densities and composition in agricultural landscapes in eastern subtropical Australia. Landscape structure (incorporating habitat fragmentation and loss) and within-patch (site) features were quantified for 60 remnant patches of Eucalyptus populnea (Myrtaceae) woodland. Tree density and species for three ecological maturity classes (regeneration, early maturity, late maturity) and local site features were assessed in one 100 × 10 m plot per patch. All but one landscape characteristic was determined within a 1.3-km radius of plots; Euclidean nearest neighbour distance was measured inside a 5-km radius. Variation in tree density and composition for each maturity class was partitioned into independent landscape, independent site and joint effects of landscape and site features using redundancy analysis. Independent site effects explained more variation in regeneration density and composition than pure landscape effects; significant predictors were the proportion of early and late maturity trees at a site, rainfall and the associated interaction. Conversely, landscape structure explained greater variation in early and late maturity tree density and composition than site predictors. Area of remnant native vegetation within a landscape and patch characteristics (area, shape, edge contrast) were significant predictors of early maturity tree density. However, 31% of the explained variation in early mature tree differences represented confounding influences of landscape and local variables. We suggest that within-patch characteristics are important in influencing semi-arid woodland tree regeneration. However, independent and confounding effects of landscape structure resulting from previous vegetation clearing may have exerted a greater historical influence on older cohorts and should be accounted for when examining woodland dynamics across a broader range of environments. [source] Long-term effect of forest fragmentation on the Amazonian gekkonid lizards, Coleodactylus amazonicus and Gonatodes humeralisAUSTRAL ECOLOGY, Issue 6 2008ELILDO ALVES RIBEIRO CARVALHO JR Abstract We investigated the effect of forest fragmentation on the abundance of the gekkonid lizards Coleodactylus amazonicus and Gonatodes humeralis in fragments associated with Amazonian savanna near Alter do Chão, Pará, Brazil. These fragments have been isolated for at least 150 years and probably more. Abundance of lizards, tree density and food availability were estimated in 1000-m transects in eight sites in continuous forest and 21 forest fragments, ranging in size from 3.6 to 360 ha and distant from ,150,10 000 m from continuous forests. Coleodactylus amazonicus was at least an order of magnitude more adundant than G. humeralis in continuous forest, and both species were negatively affected by fragmentation. Coleodactylus amazonicus was encountered only in continuous forest, the largest fragment, and one fragment adjacent to continuous forest. Gonatodes humeralis occurred in the majority of fragments, but was more common in continuous forest, and occurred in lower densities in fragments more distant from continous forest. The species with lowest recorded densities in continuous forest was the most resistant to fragmentation, contrary to what would be predicted from neutral models, such as island-biogeography theory, possibly because other factors are more important than initial population size in long-term fragmented landscapes. [source] Factors affecting Grey-headed Flying-fox (Pteropus poliocephalus: Pteropodidae) foraging in the Melbourne metropolitan area, AustraliaAUSTRAL ECOLOGY, Issue 5 2005E. MCDONALD-MADDEN Abstract Factors affecting the foraging of mobile native fauna in highly fragmented urban landscapes have seldom been quantified at large spatial scales. We investigated factors affecting foraging by Grey-headed Flying-foxes (Pteropus poliocephalus; ,flying-foxes') in the greater Melbourne metropolitan area. Flying-foxes established a continuously occupied colony site in the Royal Botanic Gardens Melbourne in 1986, and the size of the colony has subsequently increased greatly. We used a stratified-random sampling design to examine the importance of six variables on the detection of foraging flying-foxes: (i) distance from the colony site (0,10, 10,20 and 20,30 km); (ii) distance from the Yarra River (0,5 and 5,20 km); (iii) the relative tree density of the municipality; (iv) whether the site was a park or street; (v) whether there was a relatively high or low density of trees at the site; and (vi) whether food was or was not detected at the site. We surveyed 240 sites within a 30-km radius of the colony site for foraging flying-foxes in both May and October 2002. The probability of detecting a foraging flying-fox declined with increasing distance from the colony site, but increased with increasing tree cover, and was higher for parks compared with streets and when food was present. Flying-foxes were observed foraging in a number of plant genera that have no species that naturally occur in the Melbourne area. Flying-foxes in Melbourne thus forage on planted resources that are widely distributed within a fragmented landscape, and are an example of a positive response by a native species to the process of urbanization. [source] Biophysical and human influences on plant species richness in grasslands: Comparing variegated landscapes in subtropical and temperate regionsAUSTRAL ECOLOGY, Issue 3 2001S. Mcintyre Abstract A survey of grassy woodlands in the Queensland subtropics was conducted, recording herbaceous species richness at 212 sites on three properties (2756 ha). A range of habitats typical of cattle grazing enterprises was sampled and site variables included lithology, slope position, tree density, soil disturbance, soil enrichment and grazing. Results were compared with a previously published survey of temperate grasslands. Lithology, slope position and tree density had relatively minor effects on plant species richness, although in both surveys there was some evidence of lower species richness on the more fertile substrates. Soil disturbance and soil enrichment significantly reduced the richness of native species in both surveys, while exotic species were insensitive (subtropics) or increased (temperate) with disturbance. Rare native species were highly sensitive to disturbances, including grazing, in the temperate study. Although some trends were similar for rare species in the subtropics, the results were not significant and there were complex interactions between grazing, lithology and slope position. Grazing did not have a negative effect on native species richness, except in the closely grazed patches within pastures, and then only on the most intensively developed property. At the scale recorded (30 m2), the native pastures, roadsides and stock routes sampled in the subtropics appear to be among the most species-rich grasslands ever reported, both nationally and globally. Native species richness was approximately 50% higher than the temperate survey figures across all the comparable habitats. While there are no clear reasons for this result, potential explanations are proposed. [source] |