Transport Rate (transport + rate)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Transport Rate

  • electron transport rate


  • Selected Abstracts


    Pediatric Out-of-hospital Emergency Medical Services Utilization in Kansas City, Missouri

    ACADEMIC EMERGENCY MEDICINE, Issue 6 2009
    Melissa K. Miller MD
    Abstract Objectives:, The objective was to describe epidemiologic features and usage patterns of pediatric emergency medical services (EMS) transports in Kansas City, Missouri. Methods:, The study consisted of a retrospective analysis of transports from January 1, 2002, to December 31, 2004, for Kansas City, Missouri, residents younger than 15 years of age (excluding interfacility transports. Data included demographics, insurance, day and time of transport, patient zip code, chief complaint, and number of individual transports. Rates were calculated using intercensal estimates for the denominator. All rates were expressed as number of transports per 1,000 persons per year (PPY). Results:, A total of 5,717 pediatric transports occurred in the 3-year study period. Transport rates were 18 PPY for all users, 42 PPY for those <1 year old, 23 PPY for ages 1,4 years, 12 PPY for ages 5,9 years, and 14 PPY for ages 10,14 years. Infants <1 year were more likely than children aged 5,9 years to use EMS (relative risk [RR] = 3.7, 95% confidence interval [CI] = 3.4 to 4.0). Males were more likely than females to use EMS (RR = 1.2, 95% CI = 1.1 to 1.3). Most (64%) were insured by Medicaid. Transports peaked between 4 pm and 8 pm, and lowest usage was 4 am to 8 am (p < 0.001). Overall usage did not vary by weekday or season. Respiratory transports were more common in the fall and winter, while trauma transports were more common in the summer (p < 0.001). The most common diagnoses were trauma (27%), neurologic (19%), and respiratory (18%). Eleven percent of users accessed EMS more than once (26% of all transports). There was a significant inverse linear relationship between transport rate and median family income by zip code (r = ,0.36, p < 0.001). Conclusions:, Children in zip codes with lower incomes, infants, and males were more likely to use EMS. Factors related to these increased transport rates are unknown. [source]


    The factors influencing the abrasion efficiency of saltating grains on a clay-crusted playa

    EARTH SURFACE PROCESSES AND LANDFORMS, Issue 5 2001
    Christopher A. Houser
    Abstract The entrainment and subsequent transport of PM10 (particulate matter <10,µm) has become an important and challenging focus of research for both scientific and practical applications. Arid and semi-arid environments are important sources for the atmospheric loading of PM10, although the emission of this material is often limited by surface crusts. It has been suggested that the primary mechanisms through which PM10 is released from a crusted surface are abrasion by saltating grains or disturbance by agricultural and recreational activities. To examine the importance of saltation abrasion in the emission of PM10, a series of field wind tunnel tests were conducted on a clay-crusted surface near Desert Wells, Arizona. In a previous part of this study it was found that the emission rate varies linearly with the saltation transport rate, although there can be considerable variation in this relationship. This paper more closely examines the source of the variability in the abrasion efficiency, the amount of PM10 emitted by a given quantity of saltating grains. The abrasion efficiency was found to vary with the susceptibility of the surface to abrasion, the ability of the sand to abrade that surface and the availability of material with a caliper size <10,µm within the crust. Specifically, the results of the study show that the abrasion efficiency is related to the crust strength, the amount of surface disturbance and the velocity of the saltating grains. It is concluded that the spatial and temporal variability of these controls on the abrasion efficiency imposes severe contextual limitations on experimentally derived models, and can make theoretical models too complex and impractical to be of use. Copyright­© 2001 John Wiley & Sons, Ltd. [source]


    Hydrodynamic Modulation Voltammetry with a Dual Disk Chopped Flow-Microjet Electrode (CF-MJE)

    ELECTROANALYSIS, Issue 18 2003
    Nafeesa Simjee
    Abstract A novel form of hydrodynamic modulation voltammetry (HMV) is described, based on the periodic variation of mass transport in a microjet electrode (MJE) system, in combination with phase-sensitive detection techniques. In the configuration developed, a jet of solution is fired from a nozzle that is aligned directly over the surface of a dual disk Pt-Pt ultramicroelectrode (UME). The potential at each electrode is controlled separately. A rotating blade, positioned between the nozzle and the UME probe, is used to periodically interrupt flow to the electrode surface, resulting in modulation of the overall mass transfer rate between two defined extremes. The use of a dual disk UME enables two transport-limited current signals to be recorded simultaneously, one for the analyte of interest, and the other for a ,reference species' (oxygen for the studies described herein). The latter current response corresponds to the variation in mass transport rate in the chopped flow (CF) arrangement and is used as the signal for phase sensitive detection of the analyte current. Studies of potassium hexachloroiridate (III) [IrCl] oxidation in aqueous solution are used to demonstrate the capabilities of the technique. HMV in the CF-MJE arrangement allows quantitative concentration measurements, down to at least 5×10,7,M. [source]


    Can First Responders Be Sent to Selected 9-1-1 Emergency Medical Services Calls without an Ambulance?

    ACADEMIC EMERGENCY MEDICINE, Issue 4 2003
    Craig B. Key MD
    Objectives: To evaluate the feasibility and safety of initially dispatching only first responders (FRs) to selected low-risk 9-1-1 requests for emergency medical services. First responders are rapidly-responding fire crews on apparatus without transport capabilities, with firefighters trained to at least a FR level and in most cases to the basic emergency medical technician (EMT) level. Low-risk 9-1-1 requests include automatic medical alerts (ALERTs), motor vehicle incidents (MVIs) for which the caller was unable to answer any medical dispatch questions designed to prioritize the call, and 9-1-1 call disconnects (D/Cs). Methods: A before-and-after study of patient dispositions was conducted using historical controls for comparison. During the historical control phase of six months, one year prior to the study phase, basic life support ambulances (staffed with two basic EMTs) were dispatched to selected low-risk 9-1-1 incidents. During the six-month study phase, a fire FR crew equipped with automated external defibrillators (AEDs) was sent initially without an ambulance to these incidents. Results: For ALERTs (n= 290 in historical group vs. 330 in study group), there was no statistical difference in the transport rate (7% vs 10%), but there was a statistically significant increase in the follow-up use of advanced life support (ALS) (1% vs 4%, p = 0.009). No patient in the ALERTs historical group required airway management, while one patient in the study group received endotracheal intubation. No patient required defibrillation in either group. Analysis of the MVIs showed a significant decrease (p < 0.0001) in the patient transport rate from 39% of controls to 33% of study patients, but no change in the follow-up use of ALS interventions (2% for each group). For both the ALERTs and MVIs, the FR's mean response time was faster than ambulances (p < 0.0001). Among the 9-1-1 D/Cs with FRs only (n= 1,028), 15% were transported and 43 (4%) received subsequent ALS care. Four of these patients (0.4%) received intubation and two (0.2%) required defibrillation. However, no patient was judged to have had adverse outcomes as a result of the dispatch protocol change. Conclusions: Fire apparatus crews trained in the use of AEDs can safely be used to initially respond alone (without ambulances) to selected, low-risk 9-1-1 calls. This tactic improves response intervals while reducing ambulance responses to these incidents. [source]


    Quantifying anomalous intestinal sterol uptake, lymphatic transport, and biliary secretion in Abcg8,/, mice,,

    HEPATOLOGY, Issue 4 2007
    Helen H. Wang
    Sitosterolemia is caused by mutations in either ABCG5 or ABCG8, but simultaneous mutations of these genes have never been observed. To explore whether ABCG8, the sterol efflux (hemi-)transporter, plays a major role in determining intestinal absorption efficiency and hepatic secretion rates of cholesterol and sitostanol, we performed direct measurements of the absorption and lymphatic transport of these sterols in mice with chronic biliary and lymphatic fistulae, as well as the transport rates of radiolabeled cholesterol and sitostanol from plasma high-density lipoprotein (HDL) into bile in male Abcg8,/, and wild-type mice. We observed that the absorption and lymphatic transport rates of radiolabeled cholesterol and sitostanol were increased by ,40% and ,500%, respectively, in Abcg8,/, mice in the setting of constant intraduodenal infusion of micellar taurocholate and lecithin. Both strains displayed identical intestinal Npc1l1 expression levels and small intestinal transit rates. After 45 minutes of intraduodenal infusion, acute intestinal uptake rates of trace [14C]cholesterol and [3H]sitostanol were essentially similar in both groups of mice with intact biliary secretion. Furthermore, in wild-type mice, mass transport rate of [3H]sitostanol from plasma HDL into bile was significantly faster than that of [14C]cholesterol; however, no [3H]sitostanol and only traces of [14C]cholesterol were detected in bile of Abcg8,/, mice. Conclusion: Deletion of the Abcg8 gene alone significantly increases the mass of intestinal cholesterol and sitostanol absorption and reduces but does not eliminate hepatic secretion of cholesterol. Moreover, the mutation has no influence on acute uptake of cholesterol and sitostanol by the enterocyte nor small intestinal transit time. (HEPATOLOGY 2007;45:998,1006.) [source]


    Sensitivity of the 2-oxoglutarate carrier to alcohol intake contributes to mitochondrial glutathione depletion

    HEPATOLOGY, Issue 3 2003
    Olga Coll
    The mitochondrial pool of reduced glutathione (mGSH) is known to play a protective role against liver injury and cytokine-mediated cell death. However, the identification of the mitochondrial carriers involved in its transport in hepatocellular mitochondria remains unestablished. In this study, we show that the functional expression of the 2-oxoglutarate carrier from HepG2 cells in mitochondria from Xenopus laevis oocytes conferred a reduced glutathione (GSH) transport activity that was inhibited by phenylsuccinate, a specific inhibitor of the carrier. In addition, the mitochondrial transport of GSH and 2-oxoglutarate in isolated mitochondria from rat liver exhibited mutual competition and sensitivity to glutamate and phenylsuccinate. Interestingly, the kinetics of 2-oxoglutarate transport in rat liver mitochondria displayed a single Michaelis-Menten component with a Michaelis constant of 3.1 ± 0.3 mmol/L and maximum velocity of 1.9 ± 0.1 nmol/mg protein/25 seconds. Furthermore, the initial rate of 2-oxoglutarate was reduced in mitochondria from alcohol-fed rat livers, an effect that was not accompanied by an alcohol-induced decrease in the 2-oxoglutarate messenger RNA levels but rather by changes in mitochondrial membrane dynamics induced by alcohol. The fluidization of mitochondria by the fluidizing agent 2-(2-methoxyethoxy)ethyl 8-(cis-2-n-octylcyclopropyl) (A2C) restored the initial transport rate of both GSH and 2-oxoglutarate. Finally, these changes were reproduced in normal liver mitochondria enriched in cholesterol where the fluidization of cholesterol-enriched mitochondria with A2C restored the order membrane parameter and the mitochondrial 2-oxoglutarate uptake. In conclusion, these findings provide unequivocal evidence for 2-oxoglutarate as a GSH carrier and its sensitivity to membrane dynamics perturbation contributes in part to the alcohol-induced mGSH depletion. [source]


    Variability of shallow overland flow velocity and soil aggregate transport observed with digital videography

    HYDROLOGICAL PROCESSES, Issue 20 2008
    A. Sidorchuk
    Abstract Field experiments at Tiramoana station 30 km north of Christchurch, New Zealand using an erosion plot 16·5 m long, 0·6 m wide, and with a slope of 14,14·5° on rendzina soil aimed to measure the variability of flow velocity and of soil aggregates transport rate in shallow overland flow. Discharge/cross-section area ratio was used to estimate mean velocity, and high-speed digital video camera and image analysis provided information about flow and sediment transport variability. Six flow runs with 0·5,3·0 L s,1 discharges were supercritical with Froude numbers close to or more than 1. Mean flow velocity followed Poiseuille law, float numbers were more than 1·5 and hydraulic resistance was an inverse proportional function of the Reynolds number, which is typical for laminar flows. Hence actual velocity varied through time significantly and the power spectrum was of ,red-noise', which is typical for turbulent flow. Sediment transport rates had even higher variability, and soil aggregates transport was a compound Poisson process. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Ectoines as compatible solutes and carbon and energy sources for the halophilic bacterium Chromohalobacter salexigens

    JOURNAL OF APPLIED MICROBIOLOGY, Issue 1 2006
    C. Vargas
    Abstract Aims:, To investigate the catabolism of ectoine and hydroxyectoine, which are the major compatible solutes synthesized by Chromohalobacter salexigens. Methods and Results:, Growth curves performed in M63 minimal medium with low (0·75 mol l,1 NaCl), optimal (1·5 mol l,1 NaCl) or high (2·5 mol l,1 NaCl) salinity revealed that betaine and ectoines were used as substrate for growth at optimal and high salt. Ectoine transport was maximal at optimal salinity, and showed 3- and 1·5-fold lower values at low and high salinity respectively. The salt-sensitive ectA mutant CHR62 showed an ectoine transport rate 6·8-fold higher than that of the wild type. Incubation of C. salexigens in a mixture of glucose and ectoine resulted in a biphasic growth pattern. However, CO2 production due to ectoine catabolism was lower, but not completely abolished, in the presence of glucose. When used as the sole carbon source, glycine betaine effectively inhibited ectoine and hydroxyectoine synthesis at any salinity. Conclusions:, The catabolic pathways for ectoine and hydroxyectoine in C. salexigens operate at optimal and high (although less efficiently) salinity. Endogenous ectoine(s) may repress its own transport. Ectoine utilization was only partially repressed by glucose. Betaine, when used as carbon source, suppresses synthesis of ectoines even under high osmolarity conditions. Significance and Impact of the Study:, This study is a previous step to the subsequent isolation and manipulation of the catabolic genes, so as to generate strains with enhanced production of ectoine and hydroxyectoine. [source]


    In vitro analysis of intestinal absorption of cadmium and calcium in rainbow trout fed with calcium- and cadmium-supplemented diets

    JOURNAL OF FISH BIOLOGY, Issue 3 2006
    B. Baldisserotto
    The protective effects of dietary Ca2+ supplementation against Cd accumulation in rainbow trout Oncorhynchus mykiss fed with Cd-contaminated food were evaluated in relation to chronic changes in intestinal absorption rates. The changes were measured ,in vitro'. The control diet contained c. 20 mg Ca2+ g,1 food and 0·25 ,g Cd g,1 food; the experimental diets were supplemented with CaCO3 and Cd(NO3)2·4H2O to levels of 50 mg Ca2+ g,1 food and 300 ,g Cd g,1 food, alone and in combination. The Ca2+ and Cd absorption rates were measured using radiotracers (45Ca, 109Cd) at total Ca2+ and Cd concentrations of 3·0 and 0·12 mmol l,1, respectively in the intestinal saline. Chronically elevated dietary Cd caused a significant increase in Cd absorption rate by up to 10-fold at 30 days in the mid-intestine. The high Ca2+ diet prevented this up-regulation of Cd transport rate. Conversely, intestinal Ca2+ absorption was significantly increased by two- to five-fold by the Ca2+ -supplemented diet at 30 days in both the mid- and posterior intestine, and this effect was eliminated when Cd was simultaneously elevated in the diet. Ca2+ and Cd probably interact at common pathways and transport mechanisms in the intestine, though independent pathways may also exist. [source]


    Transport of neurofilaments in growing axons requires microtubules but not actin filaments

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 4 2005
    Franto Francis
    Abstract Neurofilament (NF) polymers are conveyed from cell body to axon tip by slow axonal transport, and disruption of this process is implicated in several neuronal pathologies. This movement occurs in both anterograde and retrograde directions and is characterized by relatively rapid but brief movements of neurofilaments, interrupted by prolonged pauses. The present studies combine pharmacologic treatments that target actin filaments or microtubules with imaging of NF polymer transport in living axons to examine the dependence of neurofilament transport on these cytoskeletal systems. The heavy NF subunit tagged with green fluorescent protein was expressed in cultured sympathetic neurons to visualize NF transport. Depletion of axonal actin filaments by treatment with 5 ,M latrunculin for 6 hr had no detectable effect on directionality or transport rate of NFs, but frequency of movement events was reduced from 1/3.1 min of imaging time to 1/4.9 min. Depolymerization of axonal microtubules using either 5 ,M vinblastine for 3 hr or 5 ,g/ml nocodazole for 4,6 hr profoundly suppressed neurofilament transport. In 92% of treated neurons, NF transport was undetected. These observations indicate that actin filaments are not required for neurofilament transport, although they may have subtle effects on neurofilament movements. In contrast, axonal transport of NFs requires microtubules, suggesting that anterograde and retrograde NF transport is powered by microtubule-based motors. © 2005 Wiley-Liss, Inc. [source]


    Melting out of sea ice causes greater photosynthetic stress in algae than freezing in,

    JOURNAL OF PHYCOLOGY, Issue 5 2007
    Peter J. Ralph
    Sea ice is the dominant feature of polar oceans and contains significant quantities of microalgae. When sea ice forms and melts, the microalgal cells within the ice matrix are exposed to altered salinity and irradiance conditions, and subsequently, their photosynthetic apparatuses become stressed. To simulate the effect of ice formation and melting, samples of sea-ice algae from Cape Hallett (Antarctica) were exposed to altered salinity conditions and incubated under different levels of irradiance. The physiological condition of their photosynthetic apparatuses was monitored using fast and slow fluorescence-induction kinetics. Sea-ice algae exhibited the least photosynthetic stress when maintained in 35, and 51, salinity, whereas 16, 21, and 65, treatments resulted in significant photosynthetic stress. The greatest photosynthetic impact appeared on PSII, resulting in substantial closure of PSII reaction centers when exposed to extreme salinity treatments. Salinity stress to sea-ice algae was light dependent, such that incubated samples only suffered photosynthetic damage when irradiance was applied. Analysis of fast-induction curves showed reductions in J, I, and P transients (or steps) associated with combined salinity and irradiance stress. This stress manifests itself in the limited capacity for the reduction of the primary electron receptor, QA, and the plastoquinone pool, which ultimately inhibited effective quantum yield of PSII and electron transport rate. These results suggest that sea-ice algae undergo greater photosynthetic stress during the process of melting into the hyposaline meltwater lens at the ice edge during summer than do microalgae cells during their incorporation into the ice matrix during the process of freezing. [source]


    PHOTOSYNTHETIC PERFORMANCE, LIGHT ABSORPTION, AND PIGMENT COMPOSITION OF MACROCYSTIS PYRIFERA (LAMINARIALES, PHAEOPHYCEAE) BLADES FROM DIFFERENT DEPTHS,

    JOURNAL OF PHYCOLOGY, Issue 6 2006
    María Florencia Colombo-Pallotta
    Macrocystis pyrifera (L.) C. Agardh is a canopy-forming species that occupies the entire water column. The photosynthetic tissue of this alga is exposed to a broad range of environmental factors, particularly related to light quantity and quality. In the present work, photosynthetic performance, light absorption, pigment composition, and thermal dissipation were measured in blades collected from different depths to characterize the photoacclimation and photoprotection responses of M. pyrifera according to the position of its photosynthetic tissue in the water column. The most important response of M. pyrifera was the enhancement of photoprotection in surface and near-surface blades. The size of the xanthophyll cycle pigment pool (XC) was correlated to the nonphotochemical quenching (NPQ) of chl a fluorescence capacity of the blades. In surface blades, we detected the highest accumulation of UV-absorbing compounds, photoprotective carotenoids, ,XC, and NPQ. These characteristics were important responses that allowed surface blades to present the highest maximum photosynthetic rate and the highest PSII electron transport rate. Therefore, surface blades made the highest contribution to algae production. In contrast, basal blades presented the opposite trend. These blades do not to contribute significantly to photosynthetate production of the whole organism, but they might be important for other functions, like nutrient uptake. [source]


    CYANOBACTERIAL ACCLIMATION TO RAPIDLY FLUCTUATING LIGHT IS CONSTRAINED BY INORGANIC CARBON STATUS,

    JOURNAL OF PHYCOLOGY, Issue 4 2005
    Tyler D. B. MacKenzie
    Acclimation to rapidly fluctuating light, simulating shallow aquatic habitats, is altered depending on inorganic carbon (Ci) availability. Under steady light of 50 ,mol photons·m,2·s,1, the growth rate of Synechococcus elongatus PCC7942 was similar in cells grown in high Ci (4 mM) and low Ci (0.02 mM), with induced carbon concentrating mechanisms compensating for low Ci. Growth under fluctuating light of a 1-s period averaging 50 ,mol photons·m,2·s,1 caused a drop in growth rate of 28%±6% in high Ci cells and 38%±8% in low Ci cells. In high Ci cells under fluctuating light, the PSI/PSII ratio increased, the PSII absorption cross-section decreased, and the PSII turnover rate increased in a pattern similar to high-light acclimation. In low Ci cells under fluctuating light, the PSI/PSII ratio decreased, the PSII absorption cross-section decreased, and the PSII turnover remained slow. Electron transport rate was similar in high and low Ci cells but in both was lower under fluctuating than under steady light. After acclimation to a 1-s period fluctuating light, electron transport rate decreased under steady or long-period fluctuating light. We hypothesize that high Ci cells acclimated to exploit the bright phases of the fluctuating light, whereas low Ci cells enlarged their PSII pool to integrate the fluctuating light and dampen the variation of the electron flux into a rate-restricted Ci pool. Light response curves measured under steady light, widely used to predict photosynthetic rates, do not properly predict photosynthetic rates achieved under fluctuating light, and exploitation of fluctuating light is altered by Ci status. [source]


    Daily dynamics of photosynthesis of the freshwater red alga Sirodotia delicatula (Batrachospermales, Rhodophyta)

    PHYCOLOGICAL RESEARCH, Issue 4 2009
    Thiago Kusakariba
    SUMMARY The daily course of photosynthetic parameters of a population of the freshwater red alga Sirodotia delicatula from São Paulo State, Brazil (20°43,24,S, 49°18,21,W) was investigated under natural and laboratory conditions using dissolved oxygen and in vivo chlorophyll fluorescence techniques. Field specimens in laboratory conditions showed a defined daily pattern for net photosynthesis (NP) with two peaks observed in marine macroalgae and some freshwater red algae: the first (the highest) during the morning, and the second (the lowest and less evident) during the afternoon. Values of electron transport rate did not show a clear pattern of daily variation. NP results suggest the existence of an endogenous rhythm controlling photosynthesis. The study under natural conditions in two contrasting periods (autumn (June) and spring (October)) showed that the daily course of effective and potential quantum yield values was negatively correlated with irradiance and values were similar in the beginning and end of the day. These data evidenced, respectively, high excitement pressure on photosystem II and good recovery capacity (with lower values in spring) and a lack of irreversible photodamage to photosynthetic apparatus due to the prolonged exposure to high irradiances. Non-photochemical quenching values were also negatively correlated with the irradiance, suggesting a low dissipation capacity of excess energy absorbed by reaction centers. The results evidenced a typical pattern of daily variation with evident response to irradiance. [source]


    Effects of temperature and pH on growth and photosynthesis of the thermophilic cyanobacterium Synechococcus lividus as measured by pulse-amplitude modulated fluorometry

    PHYCOLOGICAL RESEARCH, Issue 4 2006
    Chung-Ching Liao
    SUMMARY In this study, the effects of five different temperatures and pH conditions on growth and photosynthetic performance of Synechococcus lividus Copeland from Taiwan were monitored in the field and the laboratory by using an underwater pulse-amplitude modulated (Diving-PAM) fluorometer. In the field, the optimal growth temperature of S. lividus was found to be 57°C. Such a finding was congruent with the growth rate in the laboratory culture, in which the optimal growth temperatures ranged from 45 to 60°C. In photosynthetic performance, the light-saturated maximum relative electron transport rate (ETRmax) and the light-limited slope (,ETR) exhibited highest values at 50°C. At five different pH conditions, higher ETRmax and ,ETR were observed from pH 7 to 9. In addition, regression analysis demonstrated a significant positive relationship between the growth rate and the ETRmax values (R2 = 0.9527), indicating that the growth of S. lividus was largely restricted to its photosynthetic performance. In conclusion, the photosynthetic performance and growth of the thermophilic cyanobacterium S. lividus were sensitive to fluctuations in temperature but not in pH. The present investigation offers a better understanding of the photosynthetic physiology. [source]


    Effects of growth and measurement light intensities on temperature dependence of CO2 assimilation rate in tobacco leaves

    PLANT CELL & ENVIRONMENT, Issue 3 2010
    WATARU YAMORI
    ABSTRACT Effects of growth light intensity on the temperature dependence of CO2 assimilation rate were studied in tobacco (Nicotiana tabacum) because growth light intensity alters nitrogen allocation between photosynthetic components. Leaf nitrogen, ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) and cytochrome f (cyt f) contents increased with increasing growth light intensity, but the cyt f/Rubisco ratio was unaltered. Mesophyll conductance to CO2 diffusion (gm) measured with carbon isotope discrimination increased with growth light intensity but not with measuring light intensity. The responses of CO2 assimilation rate to chloroplast CO2 concentration (Cc) at different light intensities and temperatures were used to estimate the maximum carboxylation rate of Rubisco (Vcmax) and the chloroplast electron transport rate (J). Maximum electron transport rates were linearly related to cyt f content at any given temperature (e.g. 115 and 179 µmol electrons mol,1 cyt f s,1 at 25 and 40 °C, respectively). The chloroplast CO2 concentration (Ctrans) at which the transition from RuBP carboxylation to RuBP regeneration limitation occurred increased with leaf temperature and was independent of growth light intensity, consistent with the constant ratio of cyt f/Rubisco. In tobacco, CO2 assimilation rate at 380 µmol mol,1 CO2 concentration and high light was limited by RuBP carboxylation above 32 °C and by RuBP regeneration below 32 °C. [source]


    Comparison of the A,Cc curve fitting methods in determining maximum ribulose 1·5-bisphosphate carboxylase/oxygenase carboxylation rate, potential light saturated electron transport rate and leaf dark respiration

    PLANT CELL & ENVIRONMENT, Issue 2 2009
    ZEWEI MIAO
    ABSTRACT A review of the literature revealed that a variety of methods are currently used for fitting net assimilation of CO2,chloroplastic CO2 concentration (A,Cc) curves, resulting in considerable differences in estimating the A,Cc parameters [including maximum ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) carboxylation rate (Vcmax), potential light saturated electron transport rate (Jmax), leaf dark respiration in the light (Rd), mesophyll conductance (gm) and triose-phosphate utilization (TPU)]. In this paper, we examined the impacts of fitting methods on the estimations of Vcmax, Jmax, TPU, Rd and gm using grid search and non-linear fitting techniques. Our results suggested that the fitting methods significantly affected the predictions of Rubisco-limited (Ac), ribulose 1,5-bisphosphate-limited (Aj) and TPU -limited (Ap) curves and leaf photosynthesis velocities because of the inconsistent estimate of Vcmax, Jmax, TPU, Rd and gm, but they barely influenced the Jmax : Vcmax, Vcmax : Rd and Jmax : TPU ratio. In terms of fitting accuracy, simplicity of fitting procedures and sample size requirement, we recommend to combine grid search and non-linear techniques to directly and simultaneously fit Vcmax, Jmax, TPU, Rd and gm with the whole A,Cc curve in contrast to the conventional method, which fits Vcmax, Rd or gm first and then solves for Vcmax, Jmax and/or TPU with Vcmax, Rd and/or gm held as constants. [source]


    The effect of temperature on C4 -type leaf photosynthesis parameters

    PLANT CELL & ENVIRONMENT, Issue 9 2007
    RAIA-SILVIA MASSAD
    ABSTRACT C4 -type photosynthesis is known to vary with growth and measurement temperatures. In an attempt to quantify its variability with measurement temperature, the photosynthetic parameters , the maximum catalytic rate of the enzyme ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) (Vcmax), the maximum catalytic rate of the enzyme phosphoenolpyruvate carboxylase (PEPC) (Vpmax) and the maximum electron transport rate (Jmax) , were examined. Maize plants were grown in climatic-controlled phytotrons, and the curves of net photosynthesis (An) versus intercellular air space CO2 concentrations (Ci), and An versus photosynthetic photon flux density (PPFD) were determined over a temperature range of 15,40 °C. Values of Vcmax, Vpmax and Jmax were computed by inversion of the von Caemmerer & Furbank photosynthesis model. Values of Vpmax and Jmax obtained at 25 °C conform to values found in the literature. Parameters for an Arrhenius equation that best fits the calculated values of Vcmax, Vpmax and Jmax are then proposed. These parameters should be further tested with C4 plants for validation. Other model key parameters such as the mesophyll cell conductance to CO2 (gi), the bundle sheath cells conductance to CO2 (gbs) and Michaelis,Menten constants for CO2 and O2 (Kc, Kp and Ko) also vary with temperature and should be better parameterized. [source]


    Adjustment of leaf photosynthesis to shade in a natural canopy: rate parameters

    PLANT CELL & ENVIRONMENT, Issue 3 2005
    A. LAISK
    ABSTRACT The present study was performed to investigate the adjustment of the rate parameters of the light and dark reactions of photosynthesis to the natural growth light in leaves of an overstorey species, Betula pendula Roth, a subcanopy species, Tilia cordata P. Mill., and a herb, Solidago virgaurea L., growing in a natural plant community in Järvselja, Estonia. Shoots were collected from the site and individual leaves were measured in a laboratory applying a standardized routine of kinetic gas exchange, Chl fluorescence and 820 nm transmittance measurements. These measurements enabled the calculations of the quantum yield of photosynthesis and rate constants of excitation capture by photochemical and non-photochemical quenchers, rate constant for P700+ reduction via the cytochrome b6f complex with and without photosynthetic control, actual maximum and potential (uncoupled) electron transport rate, stomatal and mesophyll resistances for CO2 transport, Km(CO2) and Vm of ribulose-bisphosphate carboxylase-oxygenase (Rubisco) in vivo. In parallel, N, Chl and Rubisco contents were measured from the same leaves. No adjustment toward higher quantum yield in shade compared with sun leaves was observed, although relatively more N was partitioned to the light-harvesting machinery in shade leaves (H. Eichelmann et al., 2004). The electron transport rate through the Cyt b6f complex was strongly down-regulated under saturating light compared with darkness, and this was observed under atmospheric, as well as saturating CO2 concentration. In vivo Vm measurements of Rubisco were lower than corresponding reported measurements in vitro, and the kcat per reaction site varied widely between leaves and growth sites. The correlation between Rubisco Vm and the photosystem I density was stronger than between Vm and the density of Rubisco active sites. The results showed that the capacity of the photosynthetic machinery decreases in shade-adjusted leaves, but it still remains in excess of the actual photosynthetic rate. The photosynthetic control systems that are targeted to adjust the photosynthetic rate to meet the plant's needs and to balance the partial reactions of photosynthesis, down-regulate partial processes of photosynthesis: excess harvested light is quenched non-photochemically; excess electron transport capacity of Cyt b6f is down-regulated by ,pH-dependent photosynthetic control; Rubisco is synthesized in excess, and the number of activated Rubisco molecules is controlled by photosystem I-related processes. Consequently, the nitrogen contained in the components of the photosynthetic machinery is not used at full efficiency. The strong correlation between leaf nitrogen and photosynthetic performance is not due to the nitrogen requirements of the photosynthetic apparatus, but because a certain amount of energy must be captured through photosynthesis to maintain this nitrogen within a leaf. [source]


    On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar,von Caemmerer,Berry leaf photosynthesis model

    PLANT CELL & ENVIRONMENT, Issue 2 2004
    G. J. ETHIER
    ABSTRACT Virtually all current estimates of the maximum carboxylation rate (Vcmax) of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and the maximum electron transport rate (Jmax) for C3 species implicitly assume an infinite CO2 transfer conductance (gi). And yet, most measurements in perennial plant species or in ageing or stressed leaves show that gi imposes a significant limitation on photosynthesis. Herein, we demonstrate that many current parameterizations of the photosynthesis model of Farquhar, von Caemmerer & Berry (Planta 149, 78,90, 1980) based on the leaf intercellular CO2 concentration (Ci) are incorrect for leaves where gi limits photosynthesis. We show how conventional A,Ci curve (net CO2 assimilation rate of a leaf ,An, as a function of Ci) fitting methods which rely on a rectangular hyperbola model under the assumption of infinite gi can significantly underestimate Vcmax for such leaves. Alternative parameterizations of the conventional method based on a single, apparent Michaelis,Menten constant for CO2 evaluated at Ci[Km(CO2)i] used for all C3 plants are also not acceptable since the relationship between Vcmax and gi is not conserved among species. We present an alternative A,Ci curve fitting method that accounts for gi through a non-rectangular hyperbola version of the model of Farquhar et al. (1980). Simulated and real examples are used to demonstrate how this new approach eliminates the errors of the conventional A,Ci curve fitting method and provides Vcmax estimates that are virtually insensitive to gi. Finally, we show how the new A,Ci curve fitting method can be used to estimate the value of the kinetic constants of Rubisco in vivo is presented [source]


    Sub-optimal morning temperature induces photoinhibition in dense outdoor cultures of the alga Monodus subterraneus (Eustigmatophyta)

    PLANT CELL & ENVIRONMENT, Issue 10 2001
    A. Vonshak
    Abstract Diel changes in photosynthetic oxygen evolution and several photochemical parameters measured by chlorophyll fluorescence quenching and induction were measured in outdoor dense cultures of the alga Monodus subterraneus (Eustigmatophyta). Cultures were maintained under two temperature regimes. In one, a rise in temperature was initiated in the morning by the increase in solar radiation up to the optimal temperature of 28 °C; in the other, a heating device was used to increase the rate of warming up in early morning. Although the two cultures were maintained at the same temperature and light intensity for most of the day, cultures exposed for only a short time to suboptimal morning temperature showed a larger decrease in almost all the photosynthetic parameters. By comparing the diel changes in maximal photochemistry efficiency of photosystem II, the electron transport rate and the photochemical and non-photochemical chlorophyll fluorescence quenching of the cultures, we concluded that even a relatively short exposure to suboptimal morning temperatures induced photoinhibitory damage. The higher photochemical activity of the heated culture was also reflected in a significant increase in productivity, which was 60% higher in the morning heated cultures than in the non-heated cultures. [source]


    Strategies providing success in a variable habitat: III.

    PLANT CELL & ENVIRONMENT, Issue 8 2001
    Dynamic control of photosynthesis in Cladophora glomerata
    Abstract Diurnal patterns of photosynthesis were studied in July and April populations of Cladophora glomerata (L.) Kütz. from open and from shaded sites. Summer samples exposed to full sunlight showed decreased efficiency of open photosystem II at noon, and only slight differences were found between samples that had grown at open or at shaded sites. Electron transport rate was limited at highest fluence rates in shade plants, and non-photochemical quenching (NPQ) revealed faster regulation in samples from open sites. Daily course of de-epoxidation was not linearly correlated with the course of NPQ. The comparison of samples from open and from shaded sites revealed a higher capacity of thermal energy dissipation and an increase in the total amount of xanthophyll-cycle pigments (21%) in samples from open sites. In April, down-regulation of the efficiency of open photosystem II was related to lower water temperature, and hence, increased excitation pressure. In April the pool size of xanthophyll-cycle pigments was increased by 21% in comparison with summer and suggested higher levels of thermal energy dissipation via de-epoxidized xanthophylls. In both, summer and spring the amount of xanthophyll-cycle pigments was 20% higher in samples from open sites. Acclimation of C. glomerata to growth light conditions was further shown by experimental induction of NPQ, indicating NPQ increases of 23%, and increases of 77% in the reversible component of NPQ in open site samples. The effect of temperature on photosynthetic rate was non-linear, and different optimum temperatures of electron transport rate and oxygen evolution were exhibited. [source]


    Strategies providing success in a variable habitat: II.

    PLANT CELL & ENVIRONMENT, Issue 10 2000
    Ecophysiology of photosynthesis of Cladophora glomerata
    ABSTRACT Cladophora glomerata (L.) Kütz. is the dominant filamentous algae of the river Ilm, Thuringia, Germany. For most of the year it can be found at open as well as at shaded sites. Photosynthetic acclimation of C. glomerata to different light intensities was detected by chlorophyll fluorescence measurements and pigment analysis. Cladophora glomerata from highlight sites showed decreased values of efficiency of open photosystem II (Fv/Fm) as compared with C. glomerata from low-light sites. Winter populations revealed higher Fv/Fm values than summer populations. A light-induced decrease in efficiency of the closed photosystem II was observed at increasing irradiance intensities. The decrease was higher in C. glomerata from shaded sites compared with plants from open sites. Differences in the photosynthetic electron transport rate of different populations of C. glomerata were shown by photosynthesis,irradiance curves. Summer populations from high-light sites yielded higher maximum electron transport rates than plants from low-light sites, whereas winter populations exhibited significantly decreased values compared with the summer populations. Results of the analysis of photosynthetic pigments corresponded with data from chlorophyll fluorescence measurements. In addition to these long-term acclimation effects, C. glomerata expressed its ability to cope with rapid changes in the light environment by the de-epoxidation of violaxanthin during exposure to high light intensities. [source]


    Contributions of diffusional limitation, photoinhibition and photorespiration to midday depression of photosynthesis in Arisaema heterophyllum in natural high light

    PLANT CELL & ENVIRONMENT, Issue 3 2000
    Hiroyuki Muraoka
    ABSTRACT Diurnal changes in photosynthetic gas exchange and chlorophyll fluorescence were measured under full sunlight to reveal diffusional and non-diffusional limitations to diurnal assimilation in leaves of Arisaema heterophyllum Blume plants grown either in a riparian forest understorey (shade leaves) or in an adjacent deforested open site (sun leaves). Midday depressions of assimilation rate (A) and leaf conductance of water vapour were remarkably deeper in shade leaves than in sun leaves. To evaluate the diffusional (i.e. stomatal and leaf internal) limitation to assimilation, we used an index [1,A/A350], in which A350 is A at a chloroplast CO2 concentration of 350 ,mol mol,1. A350 was estimated from the electron transport rate (JT), determined fluorometrically, and the specificity factor of Rubisco (S), determined by gas exchange techniques. In sun leaves under saturating light, the index obtained after the ,peak' of diurnal assimilation was 70% greater than that obtained before the ,peak', but in shade leaves, it was only 20% greater. The photochemical efficiency of photosystem II (,F/Fm,) and thus JT was considerably lower in shade leaves than in sun leaves, especially after the ,peak'. In shade leaves but not in sun leaves, A at a photosynthetically active photon flux density (PPFD) > 500 ,mol m,2 s,1 depended positively on JT throughout the day. Electron flows used by the carboxylation and oxygenation (JO) of RuBP were estimated from A and JT. In sun leaves, the JO/JT ratio was significantly higher after the ,peak', but little difference was found in shade leaves. Photorespiratory CO2 efflux in the absence of atmospheric CO2 was about three times higher in sun leaves than in shade leaves. We attribute the midday depression of assimilation in sun leaves to the increased rate of photorespiration caused by stomatal closure, and that in shade leaves to severe photoinhibition. Thus, for sun leaves, increased capacities for photorespiration and non-photochemical quenching are essential to avoid photoinhibitory damage and to tolerate high leaf temperatures and water stress under excess light. The increased Rubisco content in sun leaves, which has been recognized as raising photosynthetic assimilation capacity, also contributes to increase in the capacity for photorespiration. [source]


    Cytochrome b6f mutation specifically affects thermal dissipation of absorbed light energy in Arabidopsis

    THE PLANT JOURNAL, Issue 3 2001
    Yuri Munekage
    Summary Light-induced lumenal acidification controls the efficiency of light harvesting by inducing thermal dissipation of excess absorbed light energy in photosystem II. We isolated an Arabidopsis mutant, pgr1 (proton gradient regulation), entirely lacking thermal dissipation, which was observed as little non-photochemical quenching of chlorophyll fluorescence. Map-based cloning showed that pgr1 had a point mutation in petC encoding the Rieske subunit of the cytochrome b6f complex. Although the electron transport rate was not affected at low light intensity, it was significantly restricted at high light intensity in pgr1, indicating that the lumenal acidification was not sufficient to induce thermal dissipation. This view was supported by (i) slow de-epoxidation of violaXanthin, which is closely related to lumenal acidification, and (ii) reduced 9-aminoacridine fluorescence quenching. Although lumenal acidification was insufficient to induce thermal dissipation, growth rate was not affected under low light growth conditions in pgr1. These results suggest that thermal dissipation is precisely regulated by lumenal pH to maintain maximum photosynthetic activity. We showed that pgr1 was sensitive to changes in light conditions, demonstrating that maximum activity of the cytochrome b6f complex is indispensable for short-term acclimation. [source]


    Pediatric Out-of-hospital Emergency Medical Services Utilization in Kansas City, Missouri

    ACADEMIC EMERGENCY MEDICINE, Issue 6 2009
    Melissa K. Miller MD
    Abstract Objectives:, The objective was to describe epidemiologic features and usage patterns of pediatric emergency medical services (EMS) transports in Kansas City, Missouri. Methods:, The study consisted of a retrospective analysis of transports from January 1, 2002, to December 31, 2004, for Kansas City, Missouri, residents younger than 15 years of age (excluding interfacility transports. Data included demographics, insurance, day and time of transport, patient zip code, chief complaint, and number of individual transports. Rates were calculated using intercensal estimates for the denominator. All rates were expressed as number of transports per 1,000 persons per year (PPY). Results:, A total of 5,717 pediatric transports occurred in the 3-year study period. Transport rates were 18 PPY for all users, 42 PPY for those <1 year old, 23 PPY for ages 1,4 years, 12 PPY for ages 5,9 years, and 14 PPY for ages 10,14 years. Infants <1 year were more likely than children aged 5,9 years to use EMS (relative risk [RR] = 3.7, 95% confidence interval [CI] = 3.4 to 4.0). Males were more likely than females to use EMS (RR = 1.2, 95% CI = 1.1 to 1.3). Most (64%) were insured by Medicaid. Transports peaked between 4 pm and 8 pm, and lowest usage was 4 am to 8 am (p < 0.001). Overall usage did not vary by weekday or season. Respiratory transports were more common in the fall and winter, while trauma transports were more common in the summer (p < 0.001). The most common diagnoses were trauma (27%), neurologic (19%), and respiratory (18%). Eleven percent of users accessed EMS more than once (26% of all transports). There was a significant inverse linear relationship between transport rate and median family income by zip code (r = ,0.36, p < 0.001). Conclusions:, Children in zip codes with lower incomes, infants, and males were more likely to use EMS. Factors related to these increased transport rates are unknown. [source]


    Effects of bosentan, an endothelin receptor antagonist, on bile salt export pump and multidrug resistance,associated protein 2

    BIOPHARMACEUTICS AND DRUG DISPOSITION, Issue 1 2007
    Yuji Mano
    Abstract The bile salt export pump (BSEP/Bsep/ABCB11) and multidrug resistance-associated protein 2 (MRP2/Mrp2/ABCC2) are involved in bile acid-dependent and -independent bile secretion, respectively. It has been reported that bosentan, an endothelin receptor antagonist, inhibits Bsep, which may lead to cholestatic liver injury due to the intracellular accumulation of bile salts, while increasing bile salt-independent bile flow. Thus, in this study, the effects of bosentan on BSEP/Bsep and MRP2/Mrp2 were evaluated using membrane vesicles derived from Spodoptera frugiperda (Sf) 9 cells, which express these transporters. The adenosine 5,-triphosphate (ATP)-dependent uptake of 3H-taurocholic acid into membrane vesicles for BSEP/Bsep was inhibited by bosentan, and its IC50 values were 76.8 and 101 µM for BSEP and Bsep, respectively. In contrast, bosentan stimulated the MRP2/Mrp2-mediated ATP-dependent vesicular transport of 3H-estradiol 17,-glucuronide by shifting the sigmoidal dependence of transport rate on substrate concentration to a more hyperbolic one. Collectively, these results suggest that bosentan inhibits BSEP in humans with a similar potency to rats, and that increased bile salt-independent flow in rats by bosentan is at least partly attributable to the activation of Mrp2. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Electro-membrane filtration for the selective isolation of bioactive peptides from an ,s2 -casein hydrolysate

    BIOTECHNOLOGY & BIOENGINEERING, Issue 6 2002
    Gerrald Bargeman
    Abstract For the isolation of the ingredients required for functional foods and nutraceuticals generally membrane filtration has too low a selectivity and chromatography is (too) expensive. Electro-membrane filtration (EMF) seems to be a breakthrough technology for the isolation of charged nutraceutical ingredients from natural sources. EMF combines the separation mechanisms of membrane filtration and electrophoresis. In this study, positively charged peptides with antimicrobial activity were isolated from an ,s2 -casein hydrolysate using batch-wise EMF. ,s2 -Casein f(183,207), a peptide with strong antimicrobial activity, predominated in the isolated product and was enriched from 7.5% of the total protein components in the feed to 25% in the permeate product. With conventional membrane diafiltration using the same membrane (GR60PP), isolation of this and other charged bioactive peptides could not be achieved. The economics of EMF are mainly governed by the energy costs and the capital investment, which is affected by the flux of the desired peptide. A maximum average transport rate of ,s2 -casein f(183,207) during batch-wise EMF of 1.2 g/m2 · h was achieved. Results indicate that an increase in the hydrolysate (feed) concentration, the applied potential difference and the conductivity of the permeate and electrode solutions, and a reduction in the conductivity of the feed result in a higher transport rate of ,s2 -casein f(183,207). This is in line with the expectation that the transport rate is improved when the concentration, the electrical field strength, or the electrophoretic mobility is increased, provided that the electrophoretic transport predominates. The expected energy consumption of the EMF process per gram of peptide transported was reduced by approximately 50% by applying a low overall potential difference and by processing desalinated hydrolysate. Considerable improvements in transport rate, energy efficiency, and process economics seem to be attainable by additional optimization of the process parameters and the EMF module design. © 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 80: 599,609, 2002. [source]


    MOCVD of Platinum Films from (CH3)3CH3CpPt and Pt(acac)2: Nanostructure, Conformality, and Electrical Resistivity,

    CHEMICAL VAPOR DEPOSITION, Issue 4 2003
    J. Goswami
    Abstract A potentially manufacturable liquid-source MOCVD process was applied to deposit platinum (Pt) films (12,140,nm) on thermally oxidized Si substrates. The deposition of Pt films was carried out at a substrate temperature of 350,°C by oxygen-assisted pyrolysis of complex precursors in a low-pressure, hot-wall reactor. The effects of two different metal,organic precursors, a) trimethyl methyl cyclopentadienyl platinum [(CH3)3CH3CpPt], and b) platinum acetylacetonate [Pt(acac)2], on the properties of Pt films were studied. Although the polycrystalline Pt films deposited from Pt(acac)2 exhibited a preferred (111) orientation with a X-ray intensity ratio of I(111)/I(200),=,40, the films deposited from (CH3)3CH3CpPt were highly (111) oriented with I(111)/I(200),=,270. The following properties were typical of Pt films from Pt(acac)2 as compared to Pt films from (CH3)3CH3CpPt: finer grain size (25,nm vs. 50,nm), smaller root mean square (rms) surface roughness (5,nm vs. 15,nm), and better step coverage (95,% vs. 35,%). These experimental findings indicated that growth of Pt films from Pt(acac)2 occurred under the kinetically-limited regime, whereas the deposition of Pt from (CH3)3CH3CpPt was limited by the mass transport rate. Additionally, the temperature (4.2,293,K) dependence of the electrical resistivities (,) of Pt films was measured and the electron mean free paths were estimated. It was observed that ,(T) deviated from Matthiessen's rule. [source]


    Mechanisms of transjunctional transport of NaCl and water in proximal tubules of mammalian kidneys

    ACTA PHYSIOLOGICA, Issue 1 2002
    F. KIILArticle first published online: 30 APR 200
    ABSTRACT Tight junctions and the intercellular space of proximal tubules are not accessible to direct measurements of fluid composition and transport rates, but morphological and functional data permit analysis of diffusion and osmosis causing transjunctional NaCl and water transport. In the S2 segment NaCl diffuses through tight junctions along a chloride gradient, but against a sodium gradient. Calculation in terms of modified Nernst,Fick diffusion equation after eliminating electrical terms shows that transport rates (300,500 pmol min,1 mm,1 tubule length) and transepithelial voltage of +2 mV are in agreement with observations. Diffusion coefficients are Dtj=1500 ,m2 s,1 in the S1 segment, and Dtj=90,100 ,m2 s,1 in the S2 segment where apical intercellular NaCl concentration is 132 mM, 1 mM below complete stop (Dtj=0 and Donnan equilibrium). Tight junctions with gap distance 6 Å are impermeable to mannitol (effective molecular radius 4 Å); reflection coefficients are ,=0.92 for NaHCO3 and ,=0.28 for NaCl, because of difference in anion size. The osmotic force is provided by a difference in effective transjunctional osmolality of 10 mOsm kg,1 in the S1 segment and 30 mOsm kg,1 in the S2 segment, where differences in transjunctional concentration contribute with 21 mOsm kg,1 for NaHCO3 and ,4 mOsm kg,1 for NaCl. Transjunctional difference of 30 mOsm kg,1 causes a volume flow of 2 nL min,1 mm,1 tubule length. Luminal mannitol concentration of 30 mM stops all volume flow and diffusive and convective transport of NaCl. In conclusion, transjunctional diffusion and osmosis along gradients generated by transcellular transport of other solutes account for all NaCl transport in proximal tubules. [source]