Transport Proteins (transport + protein)

Distribution by Scientific Domains
Distribution within Medical Sciences

Kinds of Transport Proteins

  • acid transport protein
  • fatty acid transport protein
  • membrane transport protein


  • Selected Abstracts


    Single-Molecule Manipulation Measurements of DNA Transport Proteins

    CHEMPHYSCHEM, Issue 5 2005
    Omar A. Saleh
    Abstract Single-molecule measurements of the manipulation of three different DNA motor proteins are reviewed. Despite some differences in the structure and mechanisms of the proteins, there are consistent phenomenological themes that relate them. Each of the experiments described represents a significant advance in the understanding of the mechanisms of DNA transport. [source]


    Electrophysiological Characteristics Of The Ca2+ -Activated Cl, Channel Family Of Anion Transport Proteins

    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 11 2000
    Catherine M Fuller
    SUMMARY 1. A protein isolated from the bovine tracheal epithelium behaves as a Ca2+ -activated Cl, channel (CaCC) when incorporated into planar lipid bilayers. 2. An antibody raised against this protein was used to screen a cDNA expression library and resulted in the isolation of a cDNA clone that exhibited nearly identical electrophysiological characteristics to the isolated endogenous protein when expressed. 3. Recent cloning of several related proteins has revealed that the cloned bovine CaCC is one of a large and growing family. All new family members so far examined are associated with the appearance of a novel Ca2+ -mediated Cl, conductance when heterologously expressed. 4. This new group of proteins may underlie the Ca2+ -mediated Cl, conductance upregulated in the cystic fibrosis (CF) knockout mouse and thought to be responsible for the escape from the significant airway pathology associated with CF. [source]


    Diagnostic value of GLUT-1 immunoreactivity to distinguish benign from malignant cystic squamous lesions of the head and neck in fine-needle aspiration biopsy material

    DIAGNOSTIC CYTOPATHOLOGY, Issue 5 2004
    Michael F. Weiner M.D.
    Abstract The distinction of cystic squamous-cell carcinoma (SCC) from benign cystic squamous lesions (BCSLs) of the head and neck can be problematic on fine-needle aspiration biopsy (FNAB) material, particularly when BCSLs display epithelial reactive atypia or when SCC is well differentiated. Glucose transporter 1 (GLUT-1), a facilitative cell surface glucose transport protein, is aberrantly expressed in many cancers including oral and hypopharyngeal SCC. We evaluated the expression of GLUT-1 by immunochemistry on FNAB material to determine its value in distinguishing cystic SCC from BCSL of the head and neck. A 5-yr retrospective review of all head and neck cystic squamous lesions having FNAB specimens with cell block material, radiological studies, and histological confirmation was performed at our institution. Cell block material from 24 cystic squamous lesions, including 8 (33%) BCSL (7 branchial cleft cysts and 1 thyroglossal duct cyst[TDC]) and 16 (67%) metastatic SCCs with cystic/liquefactive degeneration, was retrieved and immunostained with anti-GLUT-1. GLUT-1 expression was considered positive when at least 10% of squamous cells exhibited distinct cell membrane reactivity. Positive GLUT-1 immunostaining was detected in all 16 SCCs and in none of the 8 BCSLs. In the carcinoma cases, the majority of malignant cells exhibited GLUT-1 reactivity; only a minor population of well-differentiated SCC cells displaying keratinization and arranged as squamous pearls did not express GLUT-1. GLUT-1 expression in cell block material can help to distinguish cystic SCCs from BCSLs of the head and neck. In conjunction with clinical and radiological correlation, GLUT-1 immunoreactivity can be an important diagnostic aid when the cytological findings are ambiguous. Diagn. Cytopathol. 2004;31:294,299. © 2004 Wiley-Liss, Inc. [source]


    Definition of the residues required for the interaction between glycine-extended gastrin and transferrin in vitro

    FEBS JOURNAL, Issue 17 2009
    Suzana Kovac
    Transferrin is the main iron transport protein found in the circulation, and the level of transferrin saturation in the blood is an important indicator of iron status. The peptides amidated gastrin(17) (Gamide) and glycine-extended gastrin(17) (Ggly) are well known for their roles in controlling acid secretion and as growth factors in the gastrointestinal tract. Several lines of evidence, including the facts that transferrin binds gastrin, that gastrins bind ferric ions, and that the level of expression of gastrins positively correlates with transferrin saturation, suggest the possible involvement of the transferrin,gastrin interaction in iron homeostasis. In the present work, the interaction between gastrins and transferrin has been characterized by surface plasmon resonance and covalent crosslinking. First, an interaction between iron-free apo-transferrin and Gamide or Ggly was observed. The fact that no interaction was observed in the presence of the chelator EDTA suggested that the gastrin,ferric ion complex was the interacting species. Moreover, removal of ferric ions with EDTA reduced the stability of the complex between apo-transferrin and gastrins, and no interaction was observed between Gamide or Ggly and diferric transferrin. Second, some or all of glutamates at positions 8,10 of the Ggly molecule, together with the C-terminal domain, were necessary for the interaction with apo-transferrin. Third, monoferric transferrin mutants incapable of binding iron in either the N-terminal or C-terminal lobe still bound Ggly. These findings are consistent with the hypothesis that gastrin peptides bind to nonligand residues within the open cleft in each lobe of transferrin and are involved in iron loading of transferrin in vivo. Structured digital abstract ,,MINT-7212832, MINT-7212849: Apo-transferrin (uniprotkb:P02787) and Gamide (uniprotkb:P01350) bind (MI:0407) by surface plasmon resonance (MI:0107) ,,MINT-7212881, MINT-7212909: Ggly (uniprotkb:P01350) and Apo-transferrin (uniprotkb:P02787) bind (MI:0407) by cross-linking studies (MI:0030) ,,MINT-7212864: Apo-transferrin (uniprotkb:P02787) and Ggly (uniprotkb:P01350) bind (MI:0407) by competition binding (MI:0405) [source]


    Biophysical characterization of the interaction of Limulus polyphemus endotoxin neutralizing protein with lipopolysaccharide

    FEBS JOURNAL, Issue 10 2004
    Jörg Andrä
    Endotoxin-neutralizing protein (ENP) of the horseshoe crab is one of the most potent neutralizers of endotoxins [bacterial lipopolysaccharide (LPS)]. Here, we report on the interaction of LPS with recombinant ENP using a variety of physical and biological techniques. In biological assays (Limulus amebocyte lysate and tumour necrosis factor-, induction in human mononuclear cells), ENP causes a strong reduction of the immunostimulatory ability of LPS in a dose-dependent manner. Concomitantly, the accessible negative surface charges of LPS and lipid A (zeta potential) are neutralized and even converted into positive values. The gel to liquid crystalline phase transitions of LPS and lipid A shift to higher temperatures indicative of a rigidification of the acyl chains, however, the only slight enhancement of the transition enthalpy indicates that the hydrophobic moiety is not strongly disturbed. The aggregate structure of lipid A is converted from a cubic into a multilamellar phase upon ENP binding, whereas the secondary structure of ENP does not change due to the interaction with LPS. ENP contains a hydrophobic binding site to which the dye 1-anilino-8-sulfonic acid binds at a Kd of 19 µm, which is displaced by LPS. Because lipopolysaccharide-binding protein (LBP) is not able to bind to LPS when ENP and LPS are preincubated, tight binding of ENP to LPS can be deduced with a Kd in the low nonomolar range. Importantly, ENP is able to incorporate by itself into target phospholipid liposomes, and is also able to mediate the intercalation of LPS into the liposomes thus acting as a transport protein in a manner similar to LBP. Thus, LPS,ENP complexes might enter target membranes of immunocompetent cells, but are not able to activate due to the ability of ENP to change LPS aggregates from an active into an inactive form. [source]


    Intestinal Calcium Transporter Genes Are Upregulated by Estrogens and the Reproductive Cycle Through Vitamin D Receptor-Independent Mechanisms,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 10 2003
    SJ Van Cromphaut
    Abstract 1,,25(OH)2 -vitamin D strongly regulates the expression of the epithelial calcium channel CaT1. CaT1 expression is reduced in ERKO, mice and induced by estrogen treatment, pregnancy, or lactation in VDR WT and KO mice. Estrogens and vitamin D are thus independent potent regulators of the expression of this calcium influx mechanism, which is involved in active intestinal calcium absorption. Introduction: Active duodenal calcium absorption consists of three major steps: calcium influx into, transfer through, and extrusion out of the enterocyte. These steps are carried out by the calcium transport protein 1 (CaT1), calbindin-D9K, and the plasma membrane calcium ATPase (PMCA1b), respectively. We investigated whether estrogens or hormonal changes during the female reproductive cycle influence the expression of these genes, and if so, whether these effects are vitamin D-vitamin D receptor (VDR) dependent. Materials and Methods: We evaluated duodenal expression patterns in estrogen receptor (ER), and -, knockout (KO) mice, as well as in ovariectomized, estrogen-treated, pregnant, and lactating VDR wild-type (WT) and VDR KO mice. Results: Expression of calcium transporter genes was not altered in ERKO, mice. CaT1 mRNA expression was reduced by 55% in ERKO, mice, while the two other calcium transporter genes were not affected. Ovariectomy caused no change in duodenal expression pattern of VDR WT and KO mice, whereas treatment with a pharmacologic dose of estrogens induced CaT1 mRNA expression in VDR WT (4-fold) and KO (8-fold) mice. Pregnancy enhanced CaT1 expression equally in VDR WT and KO mice (12-fold). Calbindin-D9K and PMCA1b expression increased to a lesser extent and solely in pregnant VDR WT animals. In lactating VDR WT and KO mice, CaT1 mRNA expression increased 13 times, which was associated with a smaller increase in calbindin-D9K protein content and PMCA1b mRNA expression. Conclusions: Estrogens or hormonal changes during pregnancy or lactation have distinct, vitamin D-independent effects at the genomic level on active duodenal calcium absorption mechanisms, mainly through a major upregulation of the calcium influx channel CaT1. The estrogen effects seem to be mediated solely by ER,. [source]


    Commonalities in the neurobiology between autism and fragile X

    JOURNAL OF INTELLECTUAL DISABILITY RESEARCH, Issue 10 2008
    R. Hagerman
    There is a close association between autism and fragile X syndrome (FXS) with 30% of males with FXS having autism and 2 to 7% of children with autism having the fragile X mutation. The protein that is missing or deficient in FXS, FMRP, is an RNA binding and transport protein which regulates the translation of many messages important for synaptic plasticity. Typically FMRP inhibits the translation of these messages, such that protein production increases when FMRP is absent. Some of these proteins are known to also cause autism when they are mutated including neuroligin 3 and 4 and the SHANK protein. Therefore, when FMRP is missing there is dysregulation of other proteins that are known to cause autism. FMRP is an important inhibitor of protein production in the metabotropic glutamate receptor 5 pathway (mGluR5) which leads to long term depression (LTD) or the weakening of synaptic connections. Therefore, when FMRP is missing there is enhanced mGluR5 activity leading to enhanced LTD and weak or immature synaptic connections. The use of mGluR5 antagonists to reverse the LTD in the animal models of FXS has led to reversal of the learning, behaviour and dendritic spine abnormalities in these animals. There are now initial studies taking place in humans regarding the use of mGluR5 antagonists to improve behaviour and cognition in FXS. It is likely that these mGluR5 antagonists will also be helpful in a subgroup of patients with non fragile X autism who have similar problems with hyperactivity, hyperarousal and anxiety to those seen in FXS. A second cause of autism is the fragile X premutation but this mechanism of involvement is related to RNA toxicity which perhaps stimulates neuroimmune problems and may mimic other causes of autism. Neurons with the premutation are more vulnerable to environmental toxicity and oxidative stress leading to early cell death. [source]


    Mapping of senescent cell antigen on brain anion exchanger protein (AE) isoforms using HPLC and fast atom bombardment ionization mass spectrometry (FAB-MS)

    JOURNAL OF MOLECULAR RECOGNITION, Issue 1 2004
    Marguerite M. Kay
    Abstract Molecular recognition of senescent cells involves oxidation of a crucial membrane protein leading to generation of a neoantigen, called ,senescent cell antigen' (SCA), and binding of physiologic autoantibodies. These IgG autoantibodies trigger macrophage removal of the cell prior to its lysis at a time when anion transport has decreased but the membrane is still grossly intact. The neoantigen SCA is generated by oxidation of a major anion transport protein called band 3 or anion exchange protein. In this study, we use IgG physiologic autoantibodies from senescent red cells to isolate SCA from brain, and HPLC and fast atom bombardment ionization mass spectrometry (FAB-MS) to compare brain SCA to band 3. HPLC peptide maps of band 3 and SCA showed substantial homology, suggesting that SCA is a subset of band 3, and includes an estimated ,45% of the band 3 molecule. FAB-MS results indicate that residues matching all three band 3 isoforms (AE1, AE2 and AE3) are detected in SCA fractions. These findings suggest that other isoforms of band 3 may undergo the same aging changes that AE1 on red blood cells undergoes to generate SCA. This provides confirmation that SCA is on non-erythroid cell types. Implications of these studies to the generation of neoantigens by oxidation and their recognition by autoantibodies to them are discussed. Copyright © 2003 John Wiley & Sons, Ltd. [source]


    Hypolipidaemic mechanisms of action of CM108 (a flavone derivative) in hyperlipidaemic rats

    JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 9 2008
    Wei Ji
    ABSTRACT In the present study, the molecular mechanisms by which CM108, a flavone derivative, improves lipid profiles were investigated further. Hyperlipidaemia was induced by oral administration of high cholesterol and fat. After 4 weeks of treatment, the lipid levels in the serum, liver and faeces were measured and the liver genes involved in lipid metabolism were analysed to explore the molecular mechanisms of lowering lipids. CM108 modulated lipid profiles, including elevating the level of high-density lipoprotein cholesterol (HDL-C; 40%) and reducing serum levels of triglyceride (10%), total cholesterol (10%) and low-density lipoprotein cholesterol (26%). Levels of triglyceride and total cholesterol in the liver were reduced by 18% and 24%, respectively. Increased HDL-C level was attributed to the synergic effects of CM108 in increasing levels of ATP-binding cassette transporter (ABC)A1, apolipoprotein AI and apolipoprotein AII in the liver. Intriguingly, CM108 induced genes, including fatty acid transport protein, acyl-CoA synthetase and lipoprotein lipase that are important for more efficient fatty acid ,-oxidation, thereby reducing serum and liver triglyceride levels. In addition, induction of ABCG5, ABCG8 and cholesterol 7,-hydroxylase contributed to cholesterol metabolism, leading to decreases in serum and liver cholesterol levels. Thus, the genes involved in lipid metabolism were systemically modulated by CM108, which contributed to the improvement of lipid profiles in hyperlipidaemic rats. [source]


    Kell and XK immunohistochemistry in McLeod myopathy

    MUSCLE AND NERVE, Issue 10 2001
    Hans H. Jung MD
    Abstract The McLeod syndrome is an X-linked neuroacanthocytosis manifesting with myopathy and progressive chorea. It is caused by mutations of the XK gene encoding the XK protein, a putative membrane transport protein of yet unknown function. In erythroid tissues, XK forms a functional complex with the Kell glycoprotein. Here, we present an immunohistochemical study in skeletal muscle of normal controls and a McLeod patient with a XK gene point mutation (C977T) using affinity-purified antibodies against XK and Kell proteins. Histological examination of the affected muscle revealed the typical pattern of McLeod myopathy including type 2 fiber atrophy. In control muscles, Kell immunohistochemistry stained sarcoplasmic membranes. XK immunohistochemistry resulted in a type 2 fiber-specific intracellular staining that was most probably confined to the sarcoplasmic reticulum. In contrast, there was only a weak background signal without a specific staining pattern for XK and Kell in the McLeod muscle. Our results demonstrate that the lack of physiological XK expression correlates to the type 2 fiber atrophy in McLeod myopathy, and suggest that the XK protein represents a crucial factor for the maintenance of normal muscle structure and function. © 2001 John Wiley & Sons, Inc. Muscle Nerve 24: 1346,1351, 2001 [source]


    Photophysics in Motionally constrained Bioenvironment: Interactions of Norharmane with Bovine Serum Albumin,

    PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 2 2005
    Arabinda Mallick
    ABSTRACT Steady-state photophysics of norharmane (NHM), a bioactive alkaloid, has been studied in the presence of a model transport protein, bovine serum albumin (BSA). The emission spectrum undergoes a remarkable change upon addition of BSA to the aqueous solution of NHM in buffer. Addition of BSA leads to a marked increase in the fluorescence anisotropy of the neutral species of NHM, although the fluorescence anisotropy for the cationic species is almost invariant to BSA addition, suggesting that the neutral species is located in a motionally restricted environment of BSA, whereas the cationic species remains in the bulk aqueous phase. The binding constant (K) and free energy change (,G) for the probe-protein binding have been calculated from the fluorescence data. Light has been thrown on the action of urea on protein-bound NHM. The denaturation study suggests that the protein, in its native form, binds with NHM. Polarity of the microenvironment around the probe has been determined from a comparison of the fluorescence properties of the two prototropic species of NHM in water-dioxane mixture with varying composition. [source]


    Human solute carrier SLC6A14 is the ,-alanine carrier

    THE JOURNAL OF PHYSIOLOGY, Issue 17 2008
    Catriona M. H. Anderson
    The ,-alanine carrier was characterized functionally in the 1960s to 1980s at the luminal surface of the ileal mucosal wall and is a Na+ - and Cl, -dependent transporter of a number of essential and non-essential cationic and dipolar amino acids including lysine, arginine and leucine. ,-Alanine carrier-like function has not been demonstrated by any solute carrier transport system identified at the molecular level. A series of experiments were designed to determine whether solute carrier SLC6A14 is the molecular correlate of the intestinal ,-alanine carrier, perhaps the last of the classical intestinal amino acid transport systems to be identified at the molecular level. Following expression of the human SLC6A14 transporter in Xenopus laevis oocytes, the key functional characteristics of the ,-alanine carrier, identified previously in situ in ileum, were demonstrated for the first time. The transport system is both Na+ and Cl, dependent, can transport non-,-amino acids such as ,-alanine with low affinity, and has a higher affinity for dipolar and cationic amino acids such as leucine and lysine. N -methylation of its substrates reduces the affinity for transport. These observations confirm the hypothesis that the SLC6A14 gene encodes the transport protein known as the ,-alanine carrier which, due to its broad substrate specificity, is likely to play an important role in absorption of essential nutrients and drugs in the distal regions of the human gastrointestinal tract. [source]


    Altered expression of CCAAT/enhancer binding protein and FABP11 genes during adipogenesis in vitro in Atlantic salmon (Salmo salar)

    AQUACULTURE NUTRITION, Issue 1 2010
    T.-S. HUANG
    Abstract The study of CCAAT/enhancer binding proteins (C/EBPs) is important in the understanding of adipogenesis, but little is known about their regulation in fish. Here, we report three Atlantic salmon orthologs of c/ebp, and their expression in different tissues and in adipogenesis in vitro. During differentiation the expression of c/ebp, and fatp1 were upregulated in early differentiation stage with continuing high expression level in mature adipocytes, whereas c/ebp, and fabp11 expression were elevated in mature adipocytes. Furthermore, the fatty acids eicosapentaenoic (EPA) and docosahexaenoic (DHA), suppressed the expression of the c/ebps, ppar,, and fatty acid transport protein (fatp1) during terminal adipocyte differentiation. The study indicates that C/EBPs are induced upon the differentiation of primary-cultured adipocytes from Atlantic salmon and that marine n-3 highly unsaturated fatty acids (HUFAs) affect the c/ebps expressions in mature adipocytes. Therefore, the established cell model described here appears to be valuable for studying modulation of fat content in farmed Atlantic salmon. [source]


    Coatings of Low-Density Lipoprotein and Synthetic Glycoconjugates as Substrata for Hepatocytes

    ARTIFICIAL ORGANS, Issue 6 2009
    Hirofumi Yura
    Abstract Asialoglycoprotein (ASGP) receptors expressed on rat hepatocytes interact with glycoproteins containing galactose or N-acetylgalactosamine residues at the nonreducing termini of oligosaccharide chains to mediate endocytosis, and cholesterol transport protein with apolipoprotein B (LDL, low-density lipoprotein) in plasma interacts with LDL receptors and heparinoids in the extracellular matrix. We developed novel techniques to prepare galactose- and LDL-immobilized culture plates, using galactose-tagged polystyrene (galactose-carrying polystyrene [GalCPS]: N-p-vinylbenzyl-O-,-D-galactopyranosyl-[1,4]-D-gluconamide) and poly(2-acrylamide-2-methyl-1-propanesulfonate) (PAPS), respectively. Hepatocytes adhered well to plates coated with either GalCPS or LDL, and therefore the GalCPS- and LDL-coated plates were examined as specific substrata for culturing hepatocytes. These cultures promoted the formation of three-dimensional, multicellular aggregates with regulation of excess proliferation of non-parenchymal cells. Furthermore, the LDL coating resulted in higher albumin synthesis and an identical level of lactate dehydrogenase (LDH) compared with cells cultured on collagen- and GalCPS-coated plates. Thus, the two culture systems described here, and especially the LDL-coated plates, have potential for the development of a hybrid artificial liver. [source]


    Structure of human transthyretin complexed with bromophenols: a new mode of binding

    ACTA CRYSTALLOGRAPHICA SECTION D, Issue 9 2000
    Minakshi Ghosh
    The binding of two organohalogen substances, pentabromophenol (PBP) and 2,4,6-tribromophenol (TBP), to human transthyretin (TTR), a thyroid hormone transport protein, has been studied by in vitro competitive binding assays and by X-­ray crystallography. Both compounds bind to TTR with high affinity, in competition with the natural ligand thyroxine (T4). The crystal structures of the TTR,PBP and TTR,TBP complexes show some unusual binding patterns for the ligands. They bind exclusively in the `reversed' mode, with their hydroxyl group pointing towards the mouth of the binding channel and in planes approximately perpendicular to that adopted by the T4 phenolic ring in a TTR,T4 complex, a feature not observed before. The hydroxyl group in the ligands, which was previously thought to be a key ingredient for a strong binding to TTR, does not seem to play an important role in the binding of these compounds to TTR. In the TTR,PBP complex, it is primarily the halogens which interact with the TTR molecule and therefore must account for the strong affinity of binding. The interactions with the halogens are smaller in number in TTR,TBP and there is a decrease in affinity, even though the interaction with the hydroxyl group is stronger than that in the TTR,PBP complex. [source]


    Potassium-transporting proteins in skeletal muscle: cellular location and fibre-type differences

    ACTA PHYSIOLOGICA, Issue 2 2010
    M. Kristensen
    Abstract Potassium (K+) displacement in skeletal muscle may be an important factor in the development of muscle fatigue during intense exercise. It has been shown in vitro that an increase in the extracellular K+ concentration ([K+]e) to values higher than approx. 10 mm significantly reduce force development in unfatigued skeletal muscle. Several in vivo studies have shown that [K+]e increases progressively with increasing work intensity, reaching values higher than 10 mm. This increase in [K+]e is expected to be even higher in the transverse (T)-tubules than the concentration reached in the interstitium. Besides the voltage-sensitive K+ (Kv) channels that generate the action potential (AP) it is suggested that the big-conductance Ca2+ -dependent K+ (KCa1.1) channel contributes significantly to the K+ release into the T-tubules. Also the ATP-dependent K+ (KATP) channel participates, but is suggested primarily to participate in K+ release to the interstitium. Because there is restricted diffusion of K+ to the interstitium, K+ released to the T-tubules during AP propagation will be removed primarily by reuptake mediated by transport proteins located in the T-tubule membrane. The most important protein that mediates K+ reuptake in the T-tubules is the Na+,K+ -ATPase ,2 dimers, but a significant contribution of the strong inward rectifier K+ (Kir2.1) channel is also suggested. The Na+, K+, 2Cl, 1 (NKCC1) cotransporter also participates in K+ reuptake but probably mainly from the interstitium. The relative content of the different K+ -transporting proteins differs in oxidative and glycolytic muscles, and might explain the different [K+]e tolerance observed. [source]


    The lateral intercellular space as osmotic coupling compartment in isotonic transport

    ACTA PHYSIOLOGICA, Issue 1 2009
    E. H. Larsen
    Abstract Solute-coupled water transport and isotonic transport are basic functions of low- and high-resistance epithelia. These functions are studied with the epithelium bathed on the two sides with physiological saline of similar composition. Hence, at transepithelial equilibrium water enters the epithelial cells from both sides, and with the reflection coefficient of tight junction being larger than that of the interspace basement membrane, all of the water leaves the epithelium through the interspace basement membrane. The common design of transporting epithelia leads to the theory that an osmotic coupling of water absorption to ion flow is energized by lateral Na+/K+ pumps. We show that the theory accounts quantitatively for steady- and time dependent states of solute-coupled fluid uptake by toad skin epithelium. Our experimental results exclude definitively three alternative theories of epithelial solute,water coupling: stoichiometric coupling at the molecular level by transport proteins like SGLT1, electro-osmosis and a ,junctional fluid transfer mechanism'. Convection-diffusion out of the lateral space constitutes the fundamental problem of isotonic transport by making the emerging fluid hypertonic relative to the fluid in the lateral intercellular space. In the Na+ recirculation theory the ,surplus of solutes' is returned to the lateral space via the cells energized by the lateral Na+/K+ pumps. We show that this theory accounts quantitatively for isotonic and hypotonic transport at transepithelial osmotic equilibrium as observed in toad skin epithelium in vitro. Our conclusions are further developed for discussing their application to solute,solvent coupling in other vertebrate epithelia such as small intestine, proximal tubule of glomerular kidney and gallbladder. Evidence is discussed that the Na+ recirculation theory is not irreconcilable with the wide range of metabolic cost of Na+ transport observed in fluid-transporting epithelia. [source]


    Role of the Na+/Ca2+ exchanger in calcium homeostasis and human sperm motility regulation

    CYTOSKELETON, Issue 2 2006
    Zoltįn Krasznai
    Abstract A number of cell functions, such as flagellar beating, swimming velocity, acrosome reaction, etc., are triggered by a Ca2+ influx across the cell membrane. For appropriate physiological functions, the motile human sperm maintains the intracellular free calcium concentration ([Ca2+]i) at a submicromolar level. The objective of this study was to determine the role of the Na+/Ca2+ exchanger (NCX) in the maintenance of [Ca2+]i in human spermatozoa. Spermatozoa maintained in extracellular medium containing ,1 ,M Ca2+ exhibited motility similar to that of the control. In addition to several calcium transport mechanisms described earlier, we provide evidence that the NCX plays a crucial role in the maintenance of [Ca2+]i. Three chemically unrelated inhibitors of the NCX (bepridil, DCB (3,,4, -dichlorobenzamil hydrochloride), and KB-R7943) all blocked human sperm motility in a dose and incubation time dependent manner. The IC50 values for bepridil, DCB, and KB-R7943 were 16.2, 9.8, and 5.3 ,M, respectively. The treatment with the above-mentioned blockers resulted in an elevated [Ca2+]i and a decreased [Na+]i. The store-operated calcium channel (SOCC) inhibitor SKF 96365 also blocked the sperm motility (IC50 = 2.44 ,M). The presence of the NCX antigen in the human spermatozoa was proven by flow cytometry, confocal laser scanning microscopy, and immunoblotting techniques. Calcium homeostasis of human spermatozoa is maintained by several transport proteins among which the SOCC and the NCX may play a major role. Cell Motil. Cytoskeleton 2006. © 2005 Wiley-Liss, Inc. [source]


    Effects of dietary fatty acids on insulin sensitivity and secretion

    DIABETES OBESITY & METABOLISM, Issue 6 2004
    Melania Manco
    Globalization and global market have contributed to increased consumption of high-fat, energy-dense diets, particularly rich in saturated fatty acids( SFAs). Polyunsaturated fatty acids (PUFAs) regulate fuel partitioning within the cells by inducing their own oxidation through the reduction of lipogenic gene expression and the enhancement of the expression of those genes controlling lipid oxidation and thermogenesis. Moreover, PUFAs prevent insulin resistance by increasing membrane fluidity and GLUT4 transport. In contrast, SFAs are stored in non-adipocyte cells as triglycerides (TG) leading to cellular damage as a sequence of their lipotoxicity. Triglyceride accumulation in skeletal muscle cells (IMTG) derives from increased FA uptake coupled with deficient FA oxidation. High levels of circulating FAs enhance the expression of FA translocase the FA transport proteins within the myocites. The biochemical mechanisms responsible for lower fatty acid oxidation involve reduced carnitine palmitoyl transferase (CPT) activity, as a likely consequence of increased intracellular concentrations of malonyl-CoA; reduced glycogen synthase activity; and impairment of insulin signalling and glucose transport. The depletion of IMTG depots is strictly associated with an improvement of insulin sensitivity, via a reduced acetyl-CoA carboxylase (ACC) mRNA expression and an increased GLUT4 expression and pyruvate dehydrogenase (PDH) activity. In pancreatic islets, TG accumulation causes impairment of insulin secretion. In rat models, ,-cell dysfunction is related to increased triacylglycerol content in islets, increased production of nitric oxide, ceramide synthesis and ,-cell apoptosis. The decreased insulin gene promoter activity and binding of the pancreas-duodenum homeobox-1 (PDX-1) transcription factor to the insulin gene seem to mediate TG effect in islets. In humans, acute and prolonged effects of FAs on glucose-stimulated insulin secretion have been widely investigated as well as the effect of high-fat diets on insulin sensitivity and secretion and on the development of type 2 diabetes. [source]


    Monogenic migraine syndromes highlight novel drug targets

    DRUG DEVELOPMENT RESEARCH, Issue 7 2007
    J. Jay Gargus
    Abstract In the post-genomic era, the paradigm for drug discovery has changed, as every gene may become a potential target. Genetic diseases provide a special window into gene target selection. This approach is being applied to migraine making use of the genes and mutations causing familial hemiplegic migraine (FHM). FHM is caused by missense mutations in CACNA1A, altering a neuronal P/Q Ca2+ channel, in ATP1A2, altering ,2 Na,K-ATPase, and in SCN1A, altering a neuronal sodium channel. These genes provide insights into migraine pathogenesis that likely extend to other forms of migraine as well. Since the three FHM genes are only co-expressed in neurons, FHM is a neuronal, not a vascular, disease and because they all encode ion transport proteins, FHM is a neuronal channelopathy,meaning meta-stable neuronal hyperexcitability is the substrate of migraine, much as it is for genetic epilepsy syndromes. This similarity is reinforced, since different mutations of all three FHM genes can produce seizure syndromes. This has implications for drug discovery in that seizure medications already known to modulate the FHM channel mechanisms warrant more targeted development, and that drugs targeted to vascular headaches, such as the historically effective triptans, or experimental botulinum toxin, may well work by similar nonvascular mechanisms. Finally, in model neurogenetic systems such as Caenorhabditis elegans, the FHM genes also provide both a comprehensive means to discover all genes involved in their signaling pathway,genes potentially involved in common forms of the disease, and an in vivo whole animal means to screen rapidly for novel therapeutics. Drug Dev Res 68:432,440, 2007. © 2008 Wiley-Liss, Inc. [source]


    Fast set-up of doxycycline-inducible protein expression in human cell lines with a single plasmid based on Epstein,Barr virus replication and the simple tetracycline repressor

    FEBS JOURNAL, Issue 3 2007
    Markus Bach
    We have developed a novel plasmid vector, pEBTetD, for full establishment of doxycycline-inducible protein expression by just a single transfection. pEBTetD contains an Epstein,Barr virus origin of replication for stable and efficient episomal propagation in human cell lines, a cassette for continuous expression of the simple tetracycline repressor, and a cytomegalovirus-type 2 tetracycline operator (tetO2)-tetO2 promoter. As there is no integration of vector into the genome, clonal isolation of transfected cells is not necessary. Cells are thus ready for use 1 week after transfection; this contrasts with 3,12 weeks for other systems. Adequate regulation of protein expression was accomplished by abrogation of mRNA polyadenylation. In northern analysis of seven cDNAs coding for transport proteins, pools of transfected human embryonic kidney 293 cells showed on/off mRNA ratios in the order of 100 : 1. Cell pools were also analyzed for regulation of protein function. With two transport proteins of the plasma membrane, the on/off activity ratios were 24 : 1 and 34 : 1, respectively. With enhanced green fluorescent protein, a 23 : 1 ratio was observed based on fluorescence intensity data from flow cytometry. The unique advantage of our system rests on the unmodified tetracycline repressor, which is less likely, by relocation upon binding of doxycycline, to cause cellular disturbances than chimera of tetracycline repressor and eukaryotic transactivation domains. Thus, in a comprehensive comparison of on- and off-states, a steady cellular background is provided. Finally, in contrast to a system based on Flp recombinase, the set-up of our system is inherently reliable. [source]


    Mass spectrometric analysis of microtubule co-sedimented proteins from rat brain

    GENES TO CELLS, Issue 4 2008
    Tatsuhiko Sakamoto
    Microtubules (MTs) play crucial roles in a variety of cell functions, such as mitosis, vesicle transport and cell motility. MTs also compose specialized structures, such as centrosomes, spindles and cilia. However, molecular mechanisms of these MT-based functions and structures are not fully understood. Here, we analyzed MT co-sedimented proteins from rat brain by tandem mass spectrometry (MS) upon ion exchange column chromatography. We identified a total of 391 proteins. These proteins were grouped into 12 categories: 57 MT cytoskeletal proteins, including MT-associated proteins (MAPs) and motor proteins; 66 other cytoskeletal proteins; 4 centrosomal proteins; 10 chaperons; 5 Golgi proteins; 7 mitochondrial proteins; 62 nucleic acid-binding proteins; 14 nuclear proteins; 13 ribosomal proteins; 28 vesicle transport proteins; 83 proteins with diverse function and/or localization; and 42 uncharacterized proteins. Of these uncharacterized proteins, six proteins were expressed in cultured cells, resulting in the identification of three novel components of centrosomes and cilia. Our present method is not specific for MAPs, but is useful for identifying low abundant novel MAPs and components of MT-based structures. Our analysis provides an extensive list of potential candidates for future study of the molecular mechanisms of MT-based functions and structures. [source]


    ABCG2 (BCRP) expression in normal and malignant hematopoietic cells

    HEMATOLOGICAL ONCOLOGY, Issue 3 2003
    Brian L. Abbott
    Abstract ABCG2 (BCRP) is a member of the ATP-binding cassette (ABC) family of cell surface transport proteins. ABCG2 expression occurs in a variety of normal tissues, and is relatively limited to primitive stem cells. ABCG2 expression is associated with the side population (SP) phenotype of Hoechst 33342 efflux. The substrate profile of ABCG2 includes the antineoplastic drugs primarily targeting topoisomerases, including anthracyclines and camptothecins. More recently, pheophorbide, a chlorophyll-breakdown product, and protoporhyrin IX have been described as ABCG2 substrates, perhaps indicating a physiologic role of cytoprotection of primitive cells. Also, mice lacking ABCG2 expression have no intrinsic stem cell defects, although there is a remarkable increase in toxicity with antineoplastic drugs that are ABCG2 substrates, and also a photosensitivity resembling protoporphyria. Like other members of the ABC family, such as MDR1 and MRP1, ABCG2 is expressed in a variety of malignancies. Despite numerous reports of ABCG2 expression in AML, there is little evidence that ABCG2 expression is correlated with an adverse clinical outcome. This review will focus on the potential usefulness of ABCG2 as a marker primitive stem cells and possible physiologic roles of ABCG2 in protection of primitive stem cell populations, and potential methods of overcoming ABCG2-associated drug resistance in anticancer therapy. Copyright © 2003 John Wiley & Sons, Ltd. [source]


    Mrp2 modulates the activity of chloride channels in isolated hepatocytes

    HEPATOLOGY, Issue 1 2002
    Xinhua Li
    Adenosine triphosphate binding cassette family transport proteins are important organic ion transporters in hepatocytes but these molecules may also exhibit other functions. In the present study we have measured the effects of substrates of the canalicular organic ion transporter multidrug resistance associated protein 2 (Mrp2) on chloride channel activation and cell volume regulation. We found that substrates such as leukotriene D4, 17-,-estradiol glucuronide, and the leukotriene inhibitor MK-571 accelerated the activation of chloride channels by cell swelling and activated chloride channels in cytokine-pretreated hepatocytes. Two conjugated estrogens that are not Mrp2 substrates did not produce this effect. Hepatocytes derived from a strain of transport-deficient rats (TR,), which lack Mrp2 expression, showed none of these substrate effects. Coincident with their ability to activate channels, the Mrp2 substrates increased the rate of volume regulatory decrease by approximately 50% (P < .01), confirming that enhanced channel activation under this condition stimulated volume regulation. In TR-hepatocytes the Mrp2 substrate had no effect on volume regulation. In conclusion, Mrp2 plays a role in regulation of chloride channel function by reducing the lag time necessary for channel activation and consequently accelerating the process of cell volume regulation. Substrates of Mrp2 affect the ability of the protein to interact with chloride channels. These findings represent an alternative function of Mrp2 in hepatocytes. [source]


    The Complementary Membranes Forming the Blood-Brain Barrier

    IUBMB LIFE, Issue 3 2002
    Richard A. Hawkins
    Abstract Brain capillary endothelial cells form the blood-brain barrier. They are connected by extensive tight junctions, and are polarized into luminal (blood-facing) and abluminal (brain-facing) plasma membrane domains. The polar distribution of transport proteins allows for active regulation of brain extracellular fluid. Experiments on isolated membrane vesicles from capillary endothelial cells of bovine brain demonstrated the polar arrangement of amino acid and glucose transporters, and the utility of such arrangements have been proposed. For instance, passive carriers for glutamine and glutamate have been found only in the luminal membrane of blood-brain barrier cells, while Na-dependent secondary active transporters are at the abluminal membrane. This organization could promote the net removal of nitrogen-rich amino acids from brain, and account for the low level of glutamate penetration into the central nervous system. Furthermore, the presence of a ,-glutamyl cycle at the luminal membrane and Na-dependent amino acid transporters at the abluminal membrane may serve to modulate movement of amino acids from blood-to-brain. Passive carriers facilitate amino acid transport into brain. However, activation of the ,-glutamyl cycle by increased plasma amino acids is expected to generate oxoproline within the blood-brain barrier. Oxoproline stimulates secondary active amino acid transporters (Systems A and B o,+ ) at the abluminal membrane, thereby reducing net influx of amino acids to brain. Finally, passive glucose transporters are present in both the luminal and abluminal membranes of the blood-brain barrier. Interestingly, a high affinity Na-dependent glucose carrier has been described only in the abluminal membrane. This raises the question whether glucose entry may be regulated to some extent. Immunoblotting studies suggest more than one type of passive glucose transporter exist in the blood-brain barrier, each with an asymmetrical distribution. In conclusion, it is now clear that the blood-brain barrier participates in the active regulation of brain extracellular fluid, and that the diverse functions of each plasma membrane domain contributes to these regulatory functions. [source]


    Membrane transport proteins in health and disease

    JOURNAL OF INTERNAL MEDICINE, Issue 1 2007
    Article first published online: 3 JAN 200
    No abstract is available for this article. [source]


    Membrane transport proteins in health and disease

    JOURNAL OF INTERNAL MEDICINE, Issue 1 2007
    A. Aperia
    No abstract is available for this article. [source]


    EAAT4 phosphorylation at the SGK1 consensus site is required for transport modulation by the kinase

    JOURNAL OF NEUROCHEMISTRY, Issue 3 2007
    Jeyaganesh Rajamanickam
    Abstract EAAT4 (SLC1A6) is a Purkinje-Cell-specific post-synaptic excitatory amino acid transporter that plays a major role in clearing synaptic glutamate. EAAT4 abundance and function is known to be modulated by the serum and glucocorticoid inducible kinase (SGK) 1 but the precise mechanism of kinase action has not been defined yet. The present work aims to identify the molecular mechanism of EAAT4 modulation by the kinase. The EAAT4 sequence bears two putative SGK1 consensus sites (at Thr40 and Thr504) at the amino and carboxy terminus that are conserved among species. Expression studies in Xenopus oocytes demonstrated that EAAT4-mediated [3H] glutamate uptake and cell surface abundance are enhanced by co-expression of SGK1. Disruption of the SGK1 phosphorylation site at threonine 40 (T40AEAAT4) or of both phosphorylation sites (T40AT504AEAAT4) abrogated the effect of SGK1 on transporter function and expression. SGK1 modulates several transport proteins via inhibition of the ubiquitin ligase Nedd4-2. Co-expression of Nedd4-2 inhibited wild-type EAAT4 but not the T40AT504AEAAT4 mutant. Besides, RNA interference-mediated reduction of endogenous Nedd4-2 (xNedd4-2) expression increased the activity of the transporter. In conclusion, maximal glutamate transport modulation by SGK1 is accomplished by direct EAAT4 stimulation and to a lesser extent by inhibition of intrinsic Nedd4-2. [source]


    Regional and cellular distribution of mitochondrial ferritin in the mouse brain

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 14 2010
    Amanda M. Snyder
    Abstract Iron and mitochondrial dysfunction are important in many neurodegenerative diseases. Several iron transport proteins have been identified that are associated with mitochondria, most recently mitochondrial ferritin. Here we describe the cellular distribution of mitochondrial ferritin in multiple regions of the brain in C57/BL6 mice. Mitochondrial ferritin was found in all regions of the brain, although staining intensity varied between regions. Mitochondrial ferritin was detected throughout the layers of cerebral cortex and in the cerebellum, hippocampus, striatum, choroid plexus, and ependymal cells. The cell type in the brain that stains most prominently for mitochondrial ferritin is neuronal, but oligodendrocytes also stain strongly in both gray matter and in white matter tracts. Mice deficient in H-ferritin do not differ in the mitochondrial ferritin staining pattern or intensity compared with C57/BL6 mice, suggesting that there is no compensatory expression of these proteins. In addition, by using inbred mouse strains with differing levels of iron content, we have shown that regional brain iron content does not affect expression of mitochondria ferritin. The expression of mitochondria ferritin appears to be more influenced by mitochondrial density. Indeed, at an intracellular level, mitochondrial ferritin immunoreaction product is strongest where mitochondrial density is high, as seen in the ependymal cells. Given the importance and relationship between iron and mitochondrial activity, understanding the role of mitochondrial ferritin can be expected to contribute to our knowledge of mitochondrial dysfunction and neurodegenerative disease. © 2010 Wiley-Liss, Inc. [source]


    Mitochondrial transport proteins of the brain

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 15 2007
    D.A. Berkich
    Abstract In this study, cellular distribution and activity of glutamate and ,-aminobutyric acid (GABA) transport as well as oxoglutarate transport across brain mitochondrial membranes were investigated. A goal was to establish cell-type-specific expression of key transporters and enzymes involved in neurotransmitter metabolism in order to estimate neurotransmitter and metabolite traffic between neurons and astrocytes. Two methods were used to isolate brain mitochondria. One method excludes synaptosomes and the organelles may therefore be enriched in astrocytic mitochondria. The other method isolates mitochondria derived from all regions of the brain. Immunological and enzymatic methods were used to measure enzymes and carriers in the different preparations, in addition to studying transport kinetics. Immunohistochemistry was also employed using brain slices to confirm cell type specificity of enzymes and carriers. The data suggest that the aspartate/glutamate carriers (AGC) are expressed predominantly in neurons, not astrocytes, and that one of two glutamate/hydroxyl carriers is expressed predominantly in astrocytes. The GABA carrier and the oxoglutarate carrier appear to be equally distributed in astrocytes and neurons. As expected, pyruvate carboxylase and branched-chain aminotransferase were predominantly astrocytic. Insofar as the aspartate/glutamate exchange carriers are required for the malate/aspartate shuttle and for reoxidation of cytosolic NADH, the data suggest a compartmentation of glucose metabolism in which astrocytes catalyze glycolytic conversion of glucose to lactate, whereas neurons are capable of oxidizing both lactate and glucose to CO2 + H2O. © 2007 Wiley-Liss, Inc. [source]