Transmission Electron (transmission + electron)

Distribution by Scientific Domains

Terms modified by Transmission Electron

  • transmission electron micrograph
  • transmission electron microscope
  • transmission electron microscope observation
  • transmission electron microscopic observation
  • transmission electron microscopic study
  • transmission electron microscopy
  • transmission electron microscopy analysis
  • transmission electron microscopy image
  • transmission electron microscopy investigation
  • transmission electron microscopy measurement
  • transmission electron microscopy observation
  • transmission electron microscopy reveal
  • transmission electron microscopy studies
  • transmission electron microscopy techniques

  • Selected Abstracts


    Topotactic Conversion Route to Mesoporous Quasi-Single-Crystalline Co3O4 Nanobelts with Optimizable Electrochemical Performance

    ADVANCED FUNCTIONAL MATERIALS, Issue 4 2010
    Li Tian
    Abstract The growth of mesoporous quasi-single-crystalline Co3O4 nanobelts by topotactic chemical transformation from , -Co(OH)2 nanobelts is realized. During the topotactic transformation process, the primary , -Co(OH)2 nanobelt frameworks can be preserved. The phases, crystal structures, morphologies, and growth behavior of both the precursory and resultant products are characterized by powder X-ray diffraction (XRD), electron microscopy,scanning electron (SEM) and transmission electron (TEM) microscopy, and selected area electron diffraction (SAED). Detailed investigation of the formation mechanism of the porous Co3O4 nanobelts indicates topotactic nucleation and oriented growth of textured spinel Co3O4 nanowalls (nanoparticles) inside the nanobelts. Co3O4 nanocrystals prefer [0001] epitaxial growth direction of hexagonal , -Co(OH)2 nanobelts due to the structural matching of [0001] , -Co(OH)2//[111] Co3O4. The surface-areas and pore sizes of the spinel Co3O4 products can be tuned through heat treatment of , -Co(OH)2 precursors at different temperatures. The galvanostatic cycling measurement of the Co3O4 products indicates that their charge,discharge performance can be optimized. In the voltage range of 0.0,3.0,V versus Li+/Li at 40,mA g,1, reversible capacities of a sample consisting of mesoporous quasi-single-crystalline Co3O4 nanobelts can reach up to 1400,mA h g,1, much larger than the theoretical capacity of bulk Co3O4 (892,mA h g,1). [source]


    Synthesis of Indium and Indium Oxide Nanoparticles from Indium Cyclopentadienyl Precursor and Their Application for Gas Sensing,

    ADVANCED FUNCTIONAL MATERIALS, Issue 7 2003
    K. Soulantica
    Abstract Decomposition of the organometallic precursor [In(,5 -C5H5)] in toluene in the presence of methanol (8 vol.-%) at room temperature leads to the immediate formation of aggregates of indium nanoparticles of 15,±,2 nm mean diameter. The aggregates are roughly spherical with a mean size of 400,±,40 nm. The particles were characterized by means of transmission electron and high-resolution transmission electron microscopies (TEM and HRTEM), and X-ray diffraction (XRD) studies indicate that the powder consists of the tetragonal phase of indium. The thermal oxidation in air of these nanoparticles yields well-crystallized nanoparticles of In2O3 with unchanged morphology (aggregates of nanoparticles of 16.6,±,2 nm mean diameter with aggregate mean size of 400,±,40 nm) and without any sign of coalescence. XRD pattern shows that the powder consists of the cubic phase of In2O3. The electrical conductivity measurements demonstrate that this material is highly sensitive to an oxidizing gas such as nitrogen dioxide and barely sensitive to a reducing gas such as carbon monoxide. Its association with SnO2 -based sensors allows the selective detection of carbon monoxide (30 ppm) and sub-ppm amounts of nitrogen dioxide (400 ppb) in a mixture at 21,°C and at a relative humidity of 60,%. [source]


    Cellular effects of monohydrochloride of l -arginine, N, -lauroyl ethylester (LAE) on exposure to Salmonella typhimurium and Staphylococcus aureus

    JOURNAL OF APPLIED MICROBIOLOGY, Issue 5 2004
    E. Rodríguez
    Abstract Aims:, Here we study the effect of monohydrochloride of l -arginine, N, -lauroyl ethylester (LAE), a cationic preservative derived from lauric acid and arginine, on the cell envelopes of Salmonella typhimurium and Staphylococcus aureus at sub-lethal concentration such as their respective minimal inhibitory concentrations, 32 and 8 ,g ml,1, respectively. Methods and Results:, Bacterial populations were studied by using transmission electron and fluorescence microscopy (TEM and FM), flow cytometry (FC) and ion-flux across the cellular membrane. Cell integrity was altered mainly in the outer membrane of S. typhimurium, but there was no significant change in the cytoplasm. However, in Staph. aureus, clear zones, abnormal septation and mesosome-like structures were observed in the cytoplasm. Bacterial populations were double-stained with propidium iodide (PI) and SYTO-13 for FC analysis. In S. typhimurium the proportion of damaged cells after 24 h was 97% and in Staph. aureus 56·3%. LAE induced transmembrane ion flux, the increase of potassium leakage after 30 min of contact was 7·7 and 3·34 ,g ml,1 for Staph. aureus and S. typhimurium, respectively. Membrane disruption was detected by measuring the proton flow across the membrane. Conclusions:, Disturbance in membrane potential and structural changes was caused by LAE, although cells were not disrupted. Significance and Impact of the Study:, This is the first time the cellular effects of LAE on bacterial cells were studied. [source]


    Morphological variations in a tooth family through ontogeny in Pleurodeles waltl (Lissamphibia, Caudata)

    JOURNAL OF MORPHOLOGY, Issue 9 2006
    Tiphaine Davit-Béal
    Abstract Most nonmammalian species replace their teeth continuously (so-called polyphyodonty), which allows morphological and structural modifications to occur during ontogeny. We have chosen Pleurodeles waltl, a salamander easy to rear in the laboratory, as a model species to establish the morphological foundations necessary for future molecular approaches aiming to understand not only molecular processes involved in tooth development and replacement, but also their changes, notably during metamorphosis, that might usefully inform studies of modifications of tooth morphology during evolution. In order to determine when (in which developmental stage) and how (progressively or suddenly) tooth modifications take place during ontogeny, we concentrated our observations on a single tooth family, located at position I, closest to the symphysis on the left lower jaw. We monitored the development and replacement of the six first teeth in a large growth series ranging from 10-day-old embryos (tooth I1) to adult specimens (tooth I6), using light (LM), scanning (SEM), and transmission electron (TEM) microscopy. A timetable of the developmental and functional period is provided for the six teeth, and tooth development is compared in larvae and young adults. In P. waltl the first functional tooth is not replaced when the second generation tooth forms, in contrast to what occurs for the later generation teeth, leading to the presence of two functional teeth in a single position during the first 2 months of life. Larval tooth I1 shows dramatically different features when compared to adult tooth I6: a dividing zone has appeared between the dentin cone and the pedicel; the pulp cavity has enlarged, allowing accommodation of large blood vessels; the odontoblasts are well organized along the dentin surface; tubules have appeared in the dentin; and teeth have become bicuspidate. Most of these modifications take place progressively from one tooth generation to the next, but the change from monocuspid to bicuspid tooth occurs during the tooth I3 to tooth I4 transition at metamorphosis. J. Morphol. © 2006 Wiley-Liss, Inc. [source]


    Extended defects in ion assisted MBE grown SiGe/Si-nanostructures

    PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 8 2009
    P. I. Gaiduk
    Abstract MBE-grown SiGe nano-structures assisted with in situ implantation of 1 keV Ge+ ions are investigated by transmission electron (TEM) and atomic force microscopy (AFM). Self-assembled Ge islands of small size and no extended defects are observed by TEM after low ion fluence pre-implantation at high temperature. Implanted SiGe nano-structures of larger size produce threading dislocations. High dose implantation at low temperature results in formation of semi-spherical SiGe/Si nanostructures of a twin-related type. Epitaxial islands of 30-40 nm in base diameter and 11 nm in height, and a density of about 6x1010 cm,2 are produced in this case. It is evidenced by XTEM that the islands have a complicated inner structure and consist of micro-twin nucleus and semi-spherical nano-layers of a various SiGe composition. The results are discussed in terms of strain relaxation through implantation induced defects. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Vascular Mimicry of Granulosa Cells: a New Concept of Corpeus Luteum Development?

    ANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 2005
    R. M. Hirschberg
    So far, it was generally accepted that newly formed blood vessels are exclusively comprised of endothelial cells, and complemented by pericyte and myocyte recruitment during vessel maturation. Accordingly, participation of non-endothelial cells in the formation of blood vessels has rarely been suggested. Recently, evidence supporting the existence of tumour vessels lined by non-endothelial cells has emerged. Consequently, the concept of the inherent capacity of non-endothelial cells to behave like endothelial cells has been discussed for tumours, and this pathomechanism has been termed vascular mimicry. The corpus luteum is one of the most intensely vascularized tissues, and angiogenesis in the corpus luteum is more effective than in highly malignant tumours. Our results indicate active involvement of granulosa cells in luteal angiogenesis, and the aim of this study was to shed more light on this exciting prospect. The study was based on cultured granulosa cells isolated from the bovine ovary in different stages of follicle maturation. Morphology of angiogenic granulosa cells was studied by phase contrast, transmission electron and scanning electron microscopy. Expression of angiogenesis-regulating factors and their receptors was demonstrated by polymerase chain reaction (RT-PCR). Cultured granulosa cells underwent changes reminiscent of endothelial angiogenesis, i.e., migration, proliferation, differentiation and three-dimensional organization, and expressed angiogenesis-regulating factors and their receptors. Our results suggest a tight regulatory and structural association of endothelial and granulosa cells in luteal angiogenesis, suggesting physiological vascular mimicry in the ovary. [source]