Transition Behavior (transition + behavior)

Distribution by Scientific Domains

Kinds of Transition Behavior

  • phase transition behavior


  • Selected Abstracts


    Comprehensive Linkage of Defect and Phase Equilibria through Ferroelectric Transition Behavior in BaTiO3 -Based Dielectrics: Part 1.

    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 6 2008
    Defect Energies Under Ambient Air Conditions
    Defect and phase equilibria have been investigated via the ferroelectric phase transition behavior of pure and equilibrated nonstoichiometric BaTiO3 powder samples. Through fabricating the BaTiO3 materials under highly controlled conditions to preserve the equilibrium conditions with respect to Ba/Ti ratio, annealing temperature (T), and oxygen partial pressure (PO2), systematic variations in the phase transition temperature can be noted with respect to Ba/Ti ratio and T. From the data extracted, we can then determine solubility limits. Equilibrating the defect reactions at the solubility limits provides a direct approach to identify and calculate the defect energetics. The phase transition temperature decreased with increasing concentration of the TiO2 partial-Schottky defects (BaTi1,,O3,2,) and the BaO partial-Schottky defects (Ba1,,TiO3,,), and showed discontinuous changes in the two-phase region. The formation enthalpy and entropy for the partial-Schottky defect reactions was evaluated to be 2.32±0.1 eV and 10.15±0.7 kB for the BaO partial-Schottky defect, and 2.89±0.1 eV and 8.0±1.5 kB for the TiO2 partial-Schottky defects equilibrated under air annealing conditions. [source]


    Phase Transition Behavior of Novel pH-Sensitive Polyaspartamide Derivatives Grafted with 1-(3-Aminopropyl)imidazole

    MACROMOLECULAR BIOSCIENCE, Issue 9 2006
    Kwangwon Seo
    Abstract Summary: New pH-sensitive polyaspartamide derivatives were synthesized by grafting 1-(3-aminopropyl)imidazole and/or O -(2-aminoethyl)- O,-methylpoly(ethylene glycol) 5000 on polysuccinimide for application in intracellular drug delivery systems. The DS of 1-(3-aminopropyl)imidazole was adjusted by the feed molar ratio, and the structure of the prepared polymer was confirmed using FT-IR and 1H NMR spectroscopy. Their pH-sensitive properties were characterized by light transmittance measurements, and the particle size and its distribution were investigated by dynamic light scattering measurements at varying pH values. The pH-sensitive phase transition was clearly observed in polymer solutions with a high substitution of 1-(3-aminopropyl)imidazole. The prepared polymers showed a high buffering capacity between pH 5 and 7, and this increased with the DS of 1-(3-aminopropyl)imidazole. The pH dependence of the aggregation and de-aggregation behavior was examined using a fluorescence spectrometer. For MPEG/imidazole- g -polyaspartamides with a DS of 1-(3-aminopropyl)imidazole over 82%, self aggregates associated with the hydrophobic interactions of the unprotonated imidazole groups were observed at pH values above 7, and their mean size was over 200 nm, while the aggregates of polymers were dissociated at pH values below 7 by the protonation of imidazole groups. These pH-sensitive polyaspartamide derivatives are potential basic candidates for intracellular drug delivery carriers triggered by small pH changes. Mean particle size change of MPEG/imidazole- g -polyaspartamide as pH is varied. [source]


    Phase Transition Behavior and Molecular Orientation of Oligo(9,9,-dioctylfluorene- alt -bithiophene)

    MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 17 2008
    Na Li
    Abstract A novel conjugated oligomer, oligo(9,9,-dioctylfluorene- alt -bithiophene) (OF8T2), was found to exhibit a unique phase transition between crystalline and liquid-crystalline states, and a liquid-crystalline glass was easily generated, offering better TFT device performance. In thin films, upon annealing the OF8T2 molecules oriented preferentially with their planes of conjugation being normal to the substrate, and both film thickness and annealing temperature were critical to the film morphology and the molecular orientation. When the OF8T2 film was deposited on a rubbed polyimide surface and annealed, the molecules aligned their long axes along the rubbing direction. [source]


    Phase transition behavior and structure of the thermotropic liquid crystal 6-{[(4,-{[(undecyl)carbonyl]oxy}biphenyl-4yl)carbonyl]oxy}-1-hexyne

    CRYSTAL RESEARCH AND TECHNOLOGY, Issue 9 2006
    Leijing Liu
    Abstract The phase transition behaviors and corresponding structures of 6-{[(4,-{[(undecyl)carbonyl]oxy}biphenyl-4yl)carbonyl]oxy}-1-hexyne (A4EE11) were investigated using differential scanning calorimetry (DSC), polarizing optical microscopy (POM) and wide angle X-ray diffraction (WAXD). In comparison with the published homologues, 5-{[(4,-heptoxy-biphenyl-4-yl)carbonyl]oxy}-1-pentyne (A3EO7) which shows a monotropic smectic A (SmA) phase and a metastable monotropic smectic C (SmC) phase; 5-{[(4,-heptoxy-biphenyl-4-yl)oxy]carbonyl}- 1-pentyne (A3E'O7) that exhibits three enantiotropic stable liquid crystalline (LC) phases, SmA phase, SmC phase and smectic X (SmX) phase; 5-{[(4,-heptoxy-biphenyl-4-yl)carbonyl]oxy}-1-undecyne (A9EO7) which has a monotropic SmA phase and a metastable crystal phase, A4EE11 integrates the enantiotropy, monotropy and metastability of the LC phases of those three compounds. Upon cooling from isotropic state to room temperature, in the temperature range of 62.0 to 58.5°C, A4EE11 shows an enantiotropic smectic A (SmA) phase with a layer spacing d=32.69Å. Further lowering the temperature, it enters into a metastable monotropic smectic B (SmB) phase with a longer layer spacing d=34.22Å which has a tendency towards crystallization. The metastability of the liquid crystalline phase may associate to the linkage order of the ester bridge between the mesogenic core and the flexible spacer. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Multistimuli responsive micelles based on well-defined amphiphilic comb poly(ether amine) (acPEA)

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 15 2010
    Chunfeng Di
    Abstract A series of well-defined amphiphilic comb poly (ether amine)s (acPEAs) were successfully synthesized through nucleophilic addition/ring-opening reaction of commercial available poly(propylene glycol) (PPO) diglycidyl ether and Jeffamine L100, followed by esterification of hydroxyl groups in backbone by alkyl carboxylic acid with different chain length. acPEAs are comprised of hydrophilic short PEO chains and hydrophobic alkyl chains as comb chains, which are grafted on PPO backbone alternately to form well-defined structure. With the very low critical micelle concentration (CMC) of around 3.0 × 10,3 g/L, the obtained acPEAs can self-assemble into stable nanomicelles, whose aggregation is responsive to temperature, pH, and ionic strength with tunable cloud point (CP). The CP of acPEAs' aqueous solution increases with the decrease of the length of graft alkyl chains, the decrease of pH value, and the decrease of ionic strength. A transition behavior in the responsive aggregation of micelles formed by acPEA8 and acPEA10 in aqueous solution, especially at low pH value (<7.0), was observed, which was also revealed by DLS results. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3468,3475, 2010 [source]


    Acid-labile, thermoresponsive (meth)acrylamide polymers with pendant cyclic acetal moieties

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 13 2008
    Xiao-Nan Huang
    Abstract Acid-labile, thermoresponsive polymers with pendant six-membered cyclic acetal groups were prepared by radical polymerization of two monomers, N -(2,2-dimethyl-1,3-dioxan-5-yl) methacrylamide (NDMM) and N -(2,2-dimethyl-1,3-dioxan-5-yl) acrylamide (NDMA). The aqueous solution properties of the polymers, PNDMM and PNDMA, were studied by turbidimetry, 1H NMR, fluorescence, and DSC measurements. It is found that both polymers show sensitive and reversible phase transitions with distinct lower critical solution temperatures (LCST). Below their LCSTs, there are still some polymer aggregates as evidenced by measurements of pyrene excitation spectra and urea effects on the cloud points (CP) of polymers. The salting effect of six inorganic sodium salts on the phase transition behavior of PNDMM was investigated by turbidimetric approach. The salting-out to salting-in effect is in the order of SO42, > F, > Cl, > Br, > I, > SCN,, following the Hofmeister's series. pH-dependent hydrolysis of PNDMM and PNDMA was studied by turbidimetric and 1H NMR methods. They are both pH-sensitive and their hydrolysis rates significantly increase with decreasing pH value. The CP of PNDMM gradually increases with the acid-triggered hydrolysis of the acetal groups and the hydrolyzed polymer with , 30% hydrolysis degree does not show thermally induced phase transition. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4332,4343, 2008 [source]


    Comprehensive Linkage of Defect and Phase Equilibria through Ferroelectric Transition Behavior in BaTiO3 -Based Dielectrics: Part 1.

    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 6 2008
    Defect Energies Under Ambient Air Conditions
    Defect and phase equilibria have been investigated via the ferroelectric phase transition behavior of pure and equilibrated nonstoichiometric BaTiO3 powder samples. Through fabricating the BaTiO3 materials under highly controlled conditions to preserve the equilibrium conditions with respect to Ba/Ti ratio, annealing temperature (T), and oxygen partial pressure (PO2), systematic variations in the phase transition temperature can be noted with respect to Ba/Ti ratio and T. From the data extracted, we can then determine solubility limits. Equilibrating the defect reactions at the solubility limits provides a direct approach to identify and calculate the defect energetics. The phase transition temperature decreased with increasing concentration of the TiO2 partial-Schottky defects (BaTi1,,O3,2,) and the BaO partial-Schottky defects (Ba1,,TiO3,,), and showed discontinuous changes in the two-phase region. The formation enthalpy and entropy for the partial-Schottky defect reactions was evaluated to be 2.32±0.1 eV and 10.15±0.7 kB for the BaO partial-Schottky defect, and 2.89±0.1 eV and 8.0±1.5 kB for the TiO2 partial-Schottky defects equilibrated under air annealing conditions. [source]


    Roles of Ba/Ti Ratios in the Dielectric Properties of BaTiO3 Ceramics

    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 9 2001
    Jung-Kun Lee
    The effect of the Ba/Ti ratio on microstructure, dielectric/ferroelectric properties, and domain width was studied using optical microscopy, ,(T) curves, D,E hysteresis, and transmission electron microscopy. Although Ti-excess samples showed abnormal grain growth and a decrease of room-temperature permittivity due to a liquid phase at grain boundaries, its ferroelectric properties were similar to those of stoichiometric BaTiO3 ceramics. However, in Ba-excess samples, an increase of permittivity and ferroelectric properties different from those of stoichiometry were found. Changes in domain width and ferroelectric transition behavior indicated that the variation of dielectric properties was related to the internal stress. It is proposed that this internal stress originated from differences in the thermal expansion coefficient between the matrix and the second phase. [source]


    Dielectric Properties of the Perovskite System Pb(Mg1/3Nb2/3)O3 -PbTiO3 Modified by Pb(Mg1/3Ta2/3)O3 and Pb(Zn1/3Nb2/3)O3

    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 6 2001
    Dong-Hwan Suh
    Effects of Pb(Mg1/3Ta2/3)O3 and Pb(Zn1/3Nb2/3)O3 substitution in the Pb(Mg1/3Nb2/3)O3 -PbTiO3 ceramic system on structure formation, crystallographic aspects, and dielectric properties are discussed. Developed phases in the B-site precursor and perovskite systems were studied by X-ray diffraction. Crystal symmetries and dimensions of the perovskite unit cell of the two systems are compared. Changing rates of the lattice parameter with substituent PbTiO3 concentration in the two modified systems are virtually identical to that of the unmodified Pb(Mg1/3Nb2/3)O3 -PbTiO3 system. Weak-field low-frequency dielectric responses of the ceramics were investigated. The dielectric maximum temperatures of the two perovskite systems shifted almost linearly with compositional change. Dielectric constant spectra at low concentrations of PbTiO3 exhibited typical diffuse phase transition behavior, whereas those at high PbTiO3 concentrations were rather sharp. The phase transition modes reflected on the dielectric spectra were quantitatively analyzed in terms of diffuseness parameters. [source]


    Multi-Responsive Supramolecular Double Hydrophilic Diblock Copolymer Driven by Host-Guest Inclusion Complexation between , -Cyclodextrin and Adamantyl Moieties

    MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 24 2009
    Hao Liu
    Abstract Well-defined , -CD-terminated poly(N -isopropylacrylamide) (, - CD -PNIPAM) was synthesized via a combination of atom transfer radical polymerization (ATRP) and click chemistry. Moreover, adamantyl-terminated poly(2-(diethylamino)ethyl methacrylate) (Ad -PDEA) was synthesized by ATRP using an adamantane-containing initiator. Host-guest inclusion complexation between ,-CD and adamantyl moieties drives the formation of supramolecular double hydrophilic block copolymers (DHBC) from , -CD-PNIPAM and Ad -PDEA. The obtained supramolecular PNIPAM- b -PDEA diblock copolymer exhibits intriguing multi-responsive and reversible micelle-to-vesicle transition behavior in aqueous solution by dually playing with solution pH and temperatures. [source]


    Cellulose Acetate- graft -Poly(hydroxyalkanoate)s: Synthesis and Dependence of the Thermal Properties on Copolymer Composition

    MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 14 2004
    Yoshikuni Teramoto
    Abstract Summary: Several different series of cellulose acetate- graft -poly(hydroxyalkanoate)s (CA- g -PHAs) were synthesized over a wide range of compositions by the graft copolymerization of lactic acid, L -lactide, (R,S)- , -butyrolactone, , -valerolactone and , -caprolactone onto the residual hydroxyl positions of CA, by virtue of a suitable catalyst, solvent and procedure for each individual case. To achieve a diversity of molecular architectures of the respective graft copolymer series, the degree of acetyl substitution (acetyl DS) of the CA starting material was also varied, resulting in different levels of the intramolecular density of grafts. The CA- g -PHAs thus obtained were subjected to differential scanning calorimetric measurements and the relationship between their molecular structure and thermal transition behavior was estimated, in comparison with some semi-empirical equations available for polymer blends or comb-like polymers. In particular, the composition dependence of the Tgs of the graft copolymers was represented well in terms of a formula proposed by Reimschuessel for comb-like polymers, when CAs of acetyl DS ,2 were employed as a trunk polymer. The deviation of the glass transition data from the model function was discussed in connection with the manner of graft modification. [source]


    Thermosensitive and Dissolution Properties in Nanocomposite Polymer Hydrogels

    MACROMOLECULAR RAPID COMMUNICATIONS, Issue 17 2009
    Chia-Jung Wu
    Abstract We investigate the phase transition behavior and dissolution resistant properties of thermo-sensitive nanocomposite hydrogels made from PEO-PPO-PEO triblock copolymer (Pluronic F127) and Laponite silicate nanoparticles. The rapid dissolution properties of F127 copolymer hydrogels usually limit their use as sustained release drug carriers. We overcome this limitation by synergistic combination of nanoparticle gelation characteristics with polymer thermo-sensitivity. We present a proof of concept that the temperature-dependent phase transitions can be shifted as a function of hydrogel composition and that the dissolution of the polymer hydrogels as well as the release of a model drug, albumin, can be significantly slowed down by addition of nanoparticles. The dissolution resistant properties generated will prove useful in the future formulation, processing and application of our polymer hydrogels for sustained release drug delivery carriers. [source]


    Salt-Induced Depression of Lower Critical Solution Temperature in a Surface-Grafted Neutral Thermoresponsive Polymer

    MACROMOLECULAR RAPID COMMUNICATIONS, Issue 9 2006
    Young K. Jhon
    Abstract Summary: Quartz crystal microbalance with dissipation monitoring (QCM-D) is employed to determine the effect of salt on the volume phase transition of thermoresponsive polymer brushes. Changes in mass and viscoelasticity of poly(N -isopropylacrylamide) (PNIPAM) layers grafted from a QCM-D crystal are measured as a function of temperature, upon contact with aqueous solutions of varying salt concentrations. The phase-transition temperature of PNIPAM brushes, TC,graft, quantified from the QCM-D measurements is found to decrease as the concentration of salt is increased. This phenomenon is explained by the tendency of salt ions to affect the structure of water molecules (Hofmeister effect). However, in contrast to the linear decrease in phase-transition temperature upon increasing salt concentration observed for free PNIPAM, the trend in TC,graft for PNIPAM brushes is distinctively non-linear. Schematic representation of the effect of salt concentration on the phase transition behavior of thermoresponsive polymer brushes. [source]


    A Self-Assembly Approach to Temperature-Responsive Polymer Nanocontainers

    MACROMOLECULAR RAPID COMMUNICATIONS, Issue 17 2004
    Xiangrong Chen
    Abstract Summary: Thermosensitive polymer nanocontainers were formed by self-assembly of diblock copolymers poly(2-cinnamoylethyl methacrylate)- block -poly(N -isopropylacrylamide) (PCEMA- block -PNIPAM) and subsequent photo-crosslinking of the PCEMA shells. It was found that the diameter of the nanocontainers ranges from tens of nanometers to thousands of nanometers, depending on the self-assembly conditions. The phase transition of the nanocontainers takes place at 32,°C; the structural changes are reversible in a heating and cooling cycle. Schematic illustration of the structural transition behavior of the thermosensitive polymer nanocontainers. [source]


    Ternary miscibility in blends of three polymers with balanced binary interactions

    POLYMER ENGINEERING & SCIENCE, Issue 3 2003
    E. M. Woo
    This study demonstrates and discusses ternary miscibility in a three-polymer blend system based on balanced binary interactions. A truly miscible ternary blend comprising poly(,-caprolactone) (PCL), poly(benzyl methacrylate) (PBzMA), and poly(vinyl methyl ether) (PVME), was discovered and reported. Miscibility with phase homogeneity (excluding the PCL crystalline domain) in a wide composition range has been demonstrated using criteria of thermal transition behavior, cloud point, and microscopy characterization. At ambient temperature, the three-polymer ternary system is completely miscible within the entire composition range (i.e., no immiscibility loop). However, at slightly elevated temperatures above the ambient. phase separation readily occurred in this originally miscible ternary blend. A quite low "lower critical solution temperature" (LCST) near 75°C was found for the ternary blend, which is much lower than any of those for the binary pairs. Balanced interactions with no offsetting ,, among the three binary pairs were a key factor leading to a ternary miscible system. [source]


    Polymorphism and phase transition behavior of 6,6,-bis(chloromethyl)-1,1,,4,4,-tetramethyl-3,3,-(p -phenylenedimethylene)bis(piperazine-2,5-dione)

    ACTA CRYSTALLOGRAPHICA SECTION C, Issue 8 2009
    Nathan W. Polaske
    A crystallographic investigation of the title compound, C22H28Cl2N4O4, using crystals obtained under different crystallization conditions, revealed the presence of two distinct polymorphic forms. The molecular conformation in the two polymorphs is very different: one adopts a `C' shape, whereas the other adopts an `S' shape. In the latter, the molecule lies across a crystallographic twofold axis. The `S'-shaped polymorph undergoes a reversible orthorhombic-to-monoclinic phase transition on cooling, whereas the structure of the `C'-shaped polymorph is temperature insensitive. [source]


    Complex dynamic behavior during transition in a solid combustion model,

    COMPLEXITY, Issue 6 2009
    Jun Yu
    Through examples in a free-boundary model of solid combustion, this study concerns nonlinear transition behavior of small disturbances of front propagation and temperature as they evolve in time. This includes complex dynamics of period doubling, and quadrupling, and it eventually leads to chaotic oscillations. Within this complex dynamic domain we also observe a period six-folding. Both asymptotic and numerical solutions are studied. We show that for special parameters our asymptotic method with some dominant modes captures the formation of coherent structures. Finally,we discuss possible methods to improve our prediction of the solutions in the chaotic case. © 2009 Wiley Periodicals, Inc. Complexity, 2009 [source]


    Tailoring the liquid crystalline property via controlling the generation of dendronized polymers containing azobenzene mesogen

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 5 2010
    Chang-An Yang
    Abstract The first- and second-generation dendronized polymers containing azobenzene mesogen were designed and successfully synthesized via free radical polymerization. The chemical structures of the monomers were confirmed by elemental analysis, 1H NMR, and 13C NMR. The molecular characterizations of the polymers were performed with 1H NMR and gel permeation chromatography. The phase structures and transition behaviors were studied using differential scanning calorimetry, polarized light microscopy, and small-angle X-ray scatter experiments. The experiment results revealed that the first-generation dendronized polymer exhibited liquid crystalline behavior of the conventional side-chain liquid crystalline polymer with azobenzene mesogen, that is, the polymer exhibited smectic phase structure at lower temperature and nematic phase structure at higher temperature. However, the second-generation dendronized polymers exhibited more versatile intriguing liquid crystalline structures, namely smectic phase structure at lower temperature and columnar nematic phase structure at higher temperature, and moreover, the phase structure still remained before the decomposition temperature. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1149,1159, 2010 [source]


    Hydrogen bond-directed self-assembly of peripherally modified cyclotriphosphazenes with a homeotropic liquid crystalline phase

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 14 2008
    Jianwei Xu
    Abstract The synthesis and characterization of hydrogen-bonded star-shaped complexes consisting of stilbazolyloxy, azopyridyl, and Schiff base-substituted cyclotriphosphazenes (3a, 3b, and 3c, respectively) and monoalkyloxy, bis(dodecyloxy), and tris(dodecyloxy)benzoic acids are reported. The thermal behaviors of complexes are studied by the means of differential scanning calorimetry, polarizing optical microscopy, and X-ray diffractometry. Only 3a and 3b with monoalkyloxybenzoic acids show a homeotropic smectic A mesophase. The effect of azo and ethylene linkage of mesogenic groups in the cyclotriphosphazenes and the length of the flexible chain in monoalkyloxybenzoic acids on mesophase transition behaviors are investigated, revealing that the linkages in mesogenic groups governs the phase transition temperatures, and the length of flexible chain in proton donors plays an important role in controlling the magnitude of enthalpy and entropy of mesophase transitions in this supramolecular liquid crystal system. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4691,4703, 2008 [source]


    Synthesis and properties of poly(carbonate-urethane) consisting of alternating carbonate and urethane moieties

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 9 2006
    Bungo Ochiai
    Abstract Poly(carbonate-urethane) consisting of alternating carbonate and urethane moieties (poly(HC-MDI)) was prepared by polyaddition of 4,4,-diphenylmethane diisocyanate (MDI) and a monocarbonate diol bis(3-hydroxypropyl)carbonate (HC), prepared by hydrolysis of a six-membered spiroorthocarbonate 1,5,7,11-tetraoxa-spiro[5.5]undecane. The polyaddition proceeds without concomitant side reactions including carbonate exchange reaction and affords the desired poly(carbonate-urethane). The hydrolysis and thermal behaviors of poly(HC-MDI) were compared with those of the analogous polyurethane carrying no carbonate structure (poly(ND-MDI)) prepared from MDI and 1,9-nonanediol (ND). Although the glass transition behaviors are almost identical, poly(HC-MDI) is less crystalline than poly(ND-MDI). Poly(HC-MDI) is more susceptible to hydrolysis than poly(ND-MDI) probably due to the higher polarity and the lower crystallinity. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2802,2808, 2006 [source]


    Synthesis of azobenzene-functionalized two-arm, three-arm and four-arm telomers using polyfunctional chain transfer agents

    POLYMER INTERNATIONAL, Issue 11 2009
    Md Zahangir Alam
    Abstract BACKGROUND: Star-shaped polymers are very attractive because of their interesting properties such as reduced viscosity, good solubility, low glass transition temperature and fast response to external stimuli. The incorporation of azobenzene moieties in star-shaped polymers could significantly widen their potential applications in various optical devices. One of the most important properties of the azobenzene chromophore is its reversible trans,cis photoisomerization induced by UV or visible light. Photoisomerization induces conformational changes in azopolymer chains, which in turn lead to macroscopic variations in chemical and physical properties of the surroundings and media. RESULTS: This study reports the synthesis of azobenzene-functionalized two-, three- and four-arm telomers via free radical telomerization using the di-, tri- and tetrafunctional chain transfer agents 1,2- and 1,4-benzenedimethanethiol, trimethylolpropane-tris(2-mercaptoacetate) and pentaerythritol-tetrakis(3-mercaptopropionate), respectively, in the presence of azobisisobutyronitrile. Azotelomers were characterized using gel permeation chromatography and 1H NMR and Fourier transform infrared spectroscopy. Thermal phase transition behaviors were investigated using differential scanning calorimetry and polarized optical microscopy. Azotelomers synthesized in this study showed reversible photoisomerization and a fast generation of birefringence. CONCLUSION: Considering the photoisomerization behavior and birefringence of the two-, three- and four-arm azotelomers, it can be concluded that they could be potential candidates for use in various optical devices. Copyright © 2009 Society of Chemical Industry [source]


    Synthesis of poly(cystine bisamide)-PEG block copolymers grafted with 1-(3-aminopropyl)imidazole and their phase transition behaviors

    POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 11 2008
    Byung Suk Jin
    Abstract New biodegradable and pH-sensitive block copolymers were prepared by grafting 1-(3-aminopropyl) imidazole onto a backbone polymer formed via condensation polymerization between l -cystine and EDTA-dianhydride. The copolymer with a graft ratio of 79% exhibited a good buffering capacity and pH sensitivity. These are attributed to protonation,deprotonation of the imidazole ring at around pH 7. The copolymers with less imidazole content did not show any apparent responses to changes in pH. The particle size of the copolymer aggregate formed under basic conditions was around 200,nm and increased with decreasing pH. The critical aggregation values at pH 6.0 and 8.0, derived from the changes of intensity ratios (I1/I3) in the emission spectrums of pyrene, were approximately 0.17 and 0.05,mg/ml, respectively. The surface charge of the aggregates increased with the decreasing pH as a result of the increase in protonation of imidazole and the tertiary amine in the polymer chain. The microviscosity of hydrophobic domains was estimated using 1,6-diphenyl-1,3,5-hexatriene. The decrease of the anisotropy value under acidic conditions reflects a disruption of hydrophobic interaction. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Synthesis and Mesomorphic Properties of Some , ,-Alkoxy- , -benzoxypolyfluorotolane Compounds

    CHINESE JOURNAL OF CHEMISTRY, Issue 7 2006
    Chuan Qing
    Abstract Four homologue series of 4-cyano- and 4-nitro-substituted benzoate-tolanes were synthesized and characterized by IR, NMR, MS spectra and elemental analysis. Their phase transition behaviors were investigated by DSC and polarized optical microscope. The effects on the mesomorphic properties of different positions of the perfluorophenyl in the molecular core unit, the terminal cyano-substituted systems and the terminal nitro-substituted ones were discussed. [source]