Transgenic Animal Models (transgenic + animal_models)

Distribution by Scientific Domains


Selected Abstracts


Tau oligomers and aggregation in Alzheimer's disease

JOURNAL OF NEUROCHEMISTRY, Issue 6 2010
Marco A. Meraz-Ríos
J. Neurochem. (2010) 112, 1353,1367. Abstract We are analyzing the physiological function of Tau protein and its abnormal pathological behavior when this protein is self-assemble into pathological filaments. These aggregates of Tau protein are the main components in many diseases such as Alzheimer's disease (AD). Recent studies suggest that Tau acquires complex oligomeric conformations which may be toxic. In this review, we emphasized the possible phenomena implicated in the formation of these oligomers. Studies with chemical inductors indicates that the microtubule-binding domain is the most important region involved in Tau aggregation and showed the requirement of a pre-arrange Tau in abnormal conformation to promote self-assembly. Transgenic animal models and AD neuropathology studies showed that post-translational modifications are also implicated in Tau aggregation and neural cell death during AD development. Therefore, we analyzed some events that could be present during Tau aggregation. Finally, we included a brief discussion of the possible relation between glucose metabolism dysfunction in AD, and data of Tau aggregation by using aggregation inhibitors. In conclusion, the process Tau aggregation deserves further investigations to design possible therapeutic targets to inhibit the toxicity of these aggregates and it is possible that could be extended to other diseases with similar etiology. [source]


A new look at viruses in type 1 diabetes

DIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 1 2003
Hee-Sook Jun
Abstract Type 1 diabetes (T1D) results from the destruction of pancreatic beta cells. Genetic factors are believed to be a major component for the development of T1D, but the concordance rate for the development of diabetes in identical twins is only about 40%, suggesting that nongenetic factors play an important role in the expression of the disease. Viruses are one environmental factor that is implicated in the pathogenesis of T1D. To date, 14 different viruses have been reported to be associated with the development of T1D in humans and animal models. Viruses may be involved in the pathogenesis of T1D in at least two distinct ways: by inducing beta cell-specific autoimmunity, with or without infection of the beta cells, [e.g. Kilham rat virus (KRV)] and by cytolytic infection and destruction of the beta cells (e.g. encephalomyocarditis virus in mice). With respect to virus-mediated autoimmunity, retrovirus, reovirus, KRV, bovine viral diarrhoea-mucosal disease virus, mumps virus, rubella virus, cytomegalovirus and Epstein-Barr virus (EBV) are discussed. With respect to the destruction of beta cells by cytolytic infection, encephalomyocarditis virus, mengovirus and Coxsackie B viruses are discussed. In addition, a review of transgenic animal models for virus-induced autoimmune diabetes is included, particularly with regard to lymphocytic choriomeningitis virus, influenza viral proteins and the Epstein-Barr viral receptor. Finally, the prevention of autoimmune diabetes by infection of viruses such as lymphocytic choriomeningitis virus is discussed. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Effects of HCV proteins in current HCV transgenic models

HEPATOLOGY RESEARCH, Issue 2 2010
Jian Jiao
Hepatits C virus (HCV) is an enveloped virus with positive-sense single-stranded RNA genome that causes both acute and persistent infections associated with chronic hepatitis, cirrhosis and hepatocellular carcinoma, which needs fully functional human hepatocytes for its development. Due to the strict human tropism of HCV, only human and higher primates such as chimpanzees have been receptive to HCV infection and development, cognition about pathophysiololgy and host immune responses of HCV infection is limited by lacking of simple laboratory models of infection for a long time. During the past decade, gene transfer approaches have been helpful to the understanding of the molecular basis of human disease. Transgenic cell lines, chimeric and transgenic animal models were developed and had been demonstrated their invaluable benefits. This review focuses on the existing HCV transgenic models and summarize the relative results about probable pathophysical changes induced by HCV proteins. [source]


Neuroendocrine mechanisms controlling female puberty: new approaches, new concepts

INTERNATIONAL JOURNAL OF ANDROLOGY, Issue 1 2006
Sergio R. Ojeda
Summary Sexual development and mature reproductive function are controlled by a handful of neurones that, located in the basal forebrain, produce the decapeptide luteinizing hormone releasing hormone (LHRH). LHRH is released into the portal system that connects the hypothalamus to the pituitary gland and act on the latter to stimulate the synthesis and release of gonadotrophin hormones. The pubertal activation of LHRH release requires coordinated changes in excitatory and inhibitory inputs to LHRH-secreting neurones. These inputs are provided by both transsynaptic and glia-to-neurone communication pathways. Using cellular and molecular approaches, in combination with transgenic animal models and high-throughput procedures for gene discovery, we are gaining new insight into the basic mechanisms underlying this dual control of LHRH secretion and, hence, the initiation of mammalian puberty. Our results suggest that the initiation of puberty requires reciprocal neurone-glia communication involving excitatory amino acids and growth factors, and the coordinated actions of a group of transcriptional regulators that appear to represent a higher level of control governing the pubertal process. [source]


Soluble protein oligomers as emerging toxins in alzheimer's and other amyloid diseases

IUBMB LIFE, Issue 4-5 2007
Sergio T. Ferreira
Abstract Amyloid diseases are a group of degenerative disorders characterized by cell/tissue damage caused by toxic protein aggregates. Abnormal production, processing and/or clearance of misfolded proteins or peptides may lead to their accumulation and to the formation of amyloid aggregates. Early histopathological investigation of affected organs in different amyloid diseases revealed the ubiquitous presence of fibrillar protein aggregates forming large deposits known as amyloid plaques. Further in vitro biochemical and cell biology studies, as well as studies using transgenic animal models, provided strong support to what initially seemed to be a solid concept, namely that amyloid fibrils played crucial roles in amyloid pathogenesis. However, recent studies describing tissue-specific accumulation of soluble protein oligomers and their strong impact on cell function have challenged the fibril hypothesis and led to the emergence of a new view: Fibrils are not the only toxins derived from amyloidogenic proteins and, quite possibly, not the most important ones with respect to disease etiology. Here, we review some of the recent findings and concepts in this rapidly developing field, with emphasis on the involvement of soluble oligomers of the amyloid-, peptide in the pathogenesis of Alzheimer's disease. Recent studies suggesting that soluble oligomers from different proteins may share common mechanisms of cytotoxicity are also discussed. Increased understanding of the cellular toxic mechanisms triggered by protein oligomers may lead to the development of rational, effective treatments for amyloid disorders. IUBMB Life, 59: 332-345, 2007 [source]


Do axonal defects in tau and amyloid precursor protein transgenic animals model axonopathy in Alzheimer's disease?

JOURNAL OF NEUROCHEMISTRY, Issue 4 2006
Jürgen Götz
Abstract The subcellular localization of organelles, mRNAs and proteins is particularly challenging in neurons. Owing to their extended morphology, with axons in humans exceeding a meter in length, in addition to which they are not renewed but persist for the entire lifespan, it is no surprise that neurons are highly vulnerable to any perturbation of their sophisticated transport machinery. There is emerging evidence that impaired transport is not only causative for a range of motor disorders, but possibly also for Alzheimer's disease (AD) and related neurodegenerative disorders. Support for this hypothesis comes from transgenic animal models. Overexpression of human tau and amyloid precursor protein (APP) in mice and flies models the key hallmark histopathological characteristics of AD, such as somatodendritic accumulation of phosphorylated forms of tau and ,-amyloid (A,) peptide-containing amyloid plaques, as well as axonopathy. The latter has also been demonstrated in mutant mice with altered levels of Alzheimer-associated genes, such as presenilin (PS). In A,-producing APP transgenic mice, axonopathy was observed before the onset of plaque formation and tau hyperphosphorylation. In human AD brain, an axonopathy was revealed for early but not late Braak stages. The overall picture is that key players in AD, such as tau, APP and PS, perturb axonal transport early on in AD, causing impaired synaptic plasticity and reducing survival rates. It will be challenging to determine the molecular mechanisms of these different axonopathies, as this might assist in the development of new therapeutic strategies. [source]


Use of Transgenic Animals to Improve Human Health and Animal Production

REPRODUCTION IN DOMESTIC ANIMALS, Issue 4 2005
L-M Houdebine
Contents Transgenic animals are more widely used for various purposes. Applications of animal transgenesis may be divided into three major categories: (i) to obtain information on gene function and regulation as well as on human diseases, (ii) to obtain high value products (recombinant pharmaceutical proteins and xeno-organs for humans) to be used for human therapy, and (iii) to improve animal products for human consumption. All these applications are directly or not related to human health. Animal transgenesis started in 1980. Important improvement of the methods has been made and are still being achieved to reduce cost as well as killing of animals and to improve the relevance of the models. This includes gene transfer and design of reliable vectors for transgene expression. This review describes the state of the art of animal transgenesis from a technical point of view. It also reports some of the applications in the medical field based on the use of transgenic animal models. The advance in the generation of pigs to be used as the source of organs for patients and in the preparation of pharmaceutical proteins from milk and other possible biological fluids from transgenic animals is described. The projects in course aiming at improving animal production by transgenesis are also depicted. Some the specific biosafety and bioethical problems raised by the different applications of transgenesis, including consumption of transgenic animal products are discussed. [source]


Protein Kinase C Activators as Synaptogenic and Memory Therapeutics

ARCHIV DER PHARMAZIE, Issue 12 2009
Miao-Kun Sun
Abstract The last decade has witnessed a rapid progress in understanding of the molecular cascades that may underlie memory and memory disorders. Among the critical players, activity of protein kinase C (PKC) isoforms is essential for many types of learning and memory and their dysfunction, and is critical in memory disorders. PKC inhibition and functional deficits lead to an impairment of various types of learning and memory, consistent with the observations that neurotoxic amyloid inhibits PKC activity and that transgenic animal models with PKC, deficit exhibit impaired capacity in cognition. In addition, PKC isozymes play a regulatory role in amyloid production and accumulation. Restoration of the impaired PKC signal pathway pharmacologically results in an enhanced memory capacity and synaptic remodeling / repair and synaptogenesis, and, therefore, represents a potentially important strategy for the treatment of memory disorders, including Alzheimer's dementia. The PKC activators, especially those that are isozyme-specific, are a new class of drug candidates that may be developed as future memory therapeutics. [source]


Proceedings of the Australian Physiological and Pharmacological Society Symposium: New Frontiers in Muscle Research Gene transfer: manipulating and monitoring function in cells and tissues

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 8 2001
Rekha G Panchal
SUMMARY 1. The ectopic expression of genes has proven to be an extremely valuable tool for biologists. The most widely used systems involve electrically or chemically mediated transfer of genes to immortalized cell lines and, at the other end of the spectrum, transgenic animal models. As would be expected, there are compromises to be made when using either of these broad approaches. Immortalized cell lines have limited ,physiological relevance' and transgenic approaches are costly and out of the reach of many laboratories. There is also significant time required for the de novo generation of a transgenic animal. 2. As a viable alternative to these approaches, we describe the use of recombinant adenovirus and Sindbis virus to deliver genes to cells and tissues. 3. We exemplify this approach with studies from our laboratories: (i) an investigation of Ca2+ handling deficits in cardiac myocytes of hypertrophied hearts using infection with recombinant adenovirus encoding either green fluorescent protein (GFP) or the sarcoplasmic/endoplasmic reticulum calcium-ATPase (Serca2a); (ii) a study of the mechanism of macrophage/microglial migration by infection of embryonic phagocytes with a GFP-encoding virus and coculture with brain slices to then track the movement of labelled cells; and (iii) we are also exploiting the natural tropism of the Sindbis virus to label neurons in hippocampal brain slices in culture to resolve high-resolution structure and to map neuronal connectivity. 4. Further development of these approaches should open new avenues of investigation for the study of physiology in a range of cells and tissues. [source]