Home About us Contact | |||
Transferrin Family (transferrin + family)
Selected AbstractsLactoferrin protects against concanavalin A-induced liver injury in miceLIVER INTERNATIONAL, Issue 4 2010Hao Yin Abstract Background: Liver diseases, caused by viral infection, autoimmune conditions, alcohol ingestion or the use of certain drugs, are a significant health issue, as many can develop into liver failure. Lactoferrin (Lac) is an iron-binding glycoprotein that belongs to the transferrin family. Owing to its multiple biological functions, Lac has been evaluated in a number of clinical trials to treat infections, inflammation and cancer. Aim: The present study aims to reveal a profound hepatoprotective effect of Lac, using a mouse model of Concanavalin A (Con A)-induced hepatitis, which mimics the pathophysiology of human viral and autoimmune hepatitis. Method: C57Bl/6J mice were injected with bovine Lac following Con A challenge. The effects of Lac on interferon (IFN)-, and interleukin (IL)-4 expression were determined. The roles of Lac on T-cell apoptosis and activation, and leukocytes infiltration were examined. Result: The data demonstrated that the protective effect of Lac was attributed to its ability to inhibit T-cell activation and production of IFN-,, as well as to suppress IL-4 production by hepatic natural killer T cells. Conclusion: These findings indicate a great therapeutic potential of Lac in treating in treating inflammatory hepatitis and possibly other inflammatory diseases. [source] Structure of buffalo lactoferrin at 3.3,Å resolution at 277,KACTA CRYSTALLOGRAPHICA SECTION D, Issue 6 2000S. Karthikeyan The three-dimensional structure of diferric buffalo lactoferrin has been determined at 3.3,Å resolution. The structure was solved by molecular replacement using the coordinates of diferric human lactoferrin as a search model and was refined by simulated annealing (X-PLOR). The final model comprises 5316 protein atoms for all 689 residues, two Fe3+ and two CO ions. The final R factor was 21.8% for 11,711 reflections in the resolution range 17.0,3.3,Å. The folding of buffalo lactoferrin is essentially similar to that of the other members of the transferrin family. The significant differences are found in the dimensions of the binding cleft and the interlobe orientation. The interlobe interactions are predominantly hydrophobic in nature, thus facilitating the sliding of two lobes owing to external forces. The interdomain interactions are comparable in the N and C lobes. [source] Human lactoferrin stimulates skin keratinocyte function and wound re-epithelializationBRITISH JOURNAL OF DERMATOLOGY, Issue 1 2010L. Tang Summary Background, Human lactoferrin (hLF), a member of the transferrin family, is known for its antimicrobial and anti-inflammatory effects. Recent studies on various nonskin cell lines indicate that hLF may have a stimulatory effect on cell proliferation. Objectives, To study the potential role of hLF in wound re-epithelialization. Materials and methods, The effects of hLF on cell growth, migration, attachment and survival were assessed, with a rice-derived recombinant hLF (holo-rhLF), using proliferation analysis, scratch migration assay, calcein-AM/propidium iodide staining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) method, respectively. The mechanisms of hLF on cell proliferation and migration were explored using specific pathway inhibitors. The involvement of lactoferrin receptor low-density lipoprotein receptor-related protein 1 (LRP1) was examined with RNA interference technique. An in vivo swine second-degree burn wound model was also used to assess wound re-epithelialization. Results, Studies revealed that holo-rhLF significantly stimulated keratinocyte proliferation which could be blocked by mitogen-activated protein kinase (MAPK) kinase 1 inhibitor. Holo-rhLF also showed strong promoting effects on keratinocyte migration, which could be blocked by either inhibition of the MAPK, Src and Rho/ROCK pathways, or downregulation of the LRP1 receptor. With cells under starving or 12- O -tetradecanoylphorbol-13-acetate exposure, the addition of holo-rhLF was found greatly to increase cell viability and inhibit cell apoptosis. Additionally, holo-rhLF significantly increased the rate of wound re-epithelialization in swine second-degree burn wounds. Conclusions, Our studies demonstrate the direct effects of holo-rhLF on wound re-epithelialization including the enhancement of keratinocyte proliferation and migration as well as the protection of cells from apoptosis. The data strongly indicate its potential therapeutic applications in wound healing. [source] Analyses for binding of the transferrin family of proteins to the transferrin receptor 2BRITISH JOURNAL OF HAEMATOLOGY, Issue 4 2004Hiroshi Kawabata Summary Transferrin receptor 2, (TfR2,), the major product of the TfR2 gene, is the second receptor for transferrin (Tf), which can mediate cellular iron uptake in vitro. Homozygous mutations of TfR2 cause haemochromatosis, suggesting that TfR2, may not be a simple iron transporter, but a regulator of iron by identifying iron-Tf. In this study, we analysed the ligand specificity of TfR2, using human transferrin receptor 1 (TfR1) and TfR2, -stably transfected and expressing cells and flow-cytometric techniques. We showed that human TfR2, interacted with both human and bovine Tf, whereas human TfR1 interacted only with human Tf. Neither human TfR1 nor TfR2, interacted with either lactoferrin or melanotransferrin. In addition, by creating point mutations in human TfR2,, the RGD sequence in the extracellular domain of TfR2, was shown to be crucial for Tf-binding. Furthermore, we demonstrated that mutated TfR2, (Y250X), which has been reported in patients with hereditary haemochromatosis, also lost its ability to interact with both human and bovine Tf. Although human TfR1 and TfR2, share an essential structure (RGD) for ligand-binding, they have clearly different ligand specificities, which may be related to the differences in their roles in iron metabolism. [source] |