Home About us Contact | |||
Transfer Technology (transfer + technology)
Kinds of Transfer Technology Selected AbstractsChimeric honeybees (Apis mellifera) produced by transplantation of embryonic cells into pre-gastrula stage embryos and detection of chimerism by use of microsatellite markersMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 4 2006M. Bergem Abstract The production of chimeras, by use of cell transplantation, has proved to be highly valuable in studies of development by providing insights into cell fate, differentiation, and developmental potential. So far, chimeric honeybees have been created by nuclear transfer technologies. We have developed protocols to produce chimeric honeybees by use of cell transplantation. Embryonic cells were transplanted between pre-gastrula stage embryos (32,34 hr after oviposition) and hatched larvae were reared in vitro for 4 days. Chimeric individuals were detected by use of microsatellite analysis and a conservative estimation approach. 4.8% of embryos, posteriorly injected with embryonic cells, developed into chimeric honeybee larvae. By injection of cells pre-stained with fluorescent cell tracer dye, we studied the integration of transplanted cells in the developing embryos. Number of injected cells varied from 0 to 50 and cells remained and multiplied mainly in the area of injection. Mol. Reprod. Dev. © 2006 Wiley-Liss, Inc. [source] Aerobic Cometabolism of Halogenated Aliphatic Hydrocarbons: A Technology OverviewREMEDIATION, Issue 1 2000Michael T. Saul Bioremediation of chlorinated solvents has been moving from an innovative to mainstream technology for environmental applications. Cometablism of chlorinated solvents by monooxygenase has been demonstrated for trichloroethylene (TCE). Cl-out microbes combine the dehalogenation of PCE with the monooxygenase destruction of TCE to complete the PCE breakdown pathway. Underthe right conditions, cometabolic bioremediation can be cost effective, fast, and complete. Aerobic bioremediation can augment mass transfer technologies such as pump and treat or sparging/vapor extraction to improve their efficiency. [source] A reversibly immortalized human hepatocyte cell line as a source of hepatocyte-based biological supportADDICTION BIOLOGY, Issue 4 2001Naoya Kobayashi The application of hepatocyte transplantation (HTX) is increasingly envisioned for temporary metabolic support during acute liver failure and provision of specific liver functions in inherited liver-based metabolic diseases. Compared with whole liver transplantation, HTX is a technically simple procedure and hepatocytes can be cryopreserved for future use. A major limitation of this form of therapy in humans is the worldwide shortage of human livers for isolating an adequate number of transplantable human hepatocyes when needed. Furthermore, the numbers of donor livers available for hepatocyte isolation is limited by competition for their use in whole organ transplantation. Considering the cost of hepatocyte isolation and the need for immediate preparation of consistent and functional cells, it is unlikely that human hepatocytes can be obtained on such a scale to treat a large number of patients with falling liver functions. The utilization of xenogenic hepatocytes will result in additional concerns regarding transmission of infectious pathogens and immunological and physiological incompatibilities between animals and humans. An attractive alternative to primary human hepatocytes is the use of tightly regulated human hepatocyte cell lines. Such cell lines can provide the advantages of unlimited availability, sterility and uniformity. We describe here methods for creating transplantable human hepatocyte cell lines using currently available cell cultures and gene transfer technology. [source] Germ line transformation of the olive fly Bactrocera oleae using a versatile transgenesis markerINSECT MOLECULAR BIOLOGY, Issue 1 2006M. Koukidou Abstract The olive fruit fly (olive fly) Bactrocera oleae (Dacus), recently introduced in North America, is the most destructive pest of olives worldwide. The lack of an efficient gene transfer technology for olive fly has hampered molecular analysis, as well as development of genetic techniques for its control. We have developed a Minos -based transposon vector carrying a self-activating cassette which overexpresses the enhanced green fluorescent protein (EGFP). Efficient transposase-mediated integration of one to multiple copies of this vector was achieved in the germ line of B. oleae by coinjecting the vector along with in vitro synthesized Minos transposase mRNA into preblastoderm embryos. The self-activating gene construct combined with transposase mRNA present a system with potential for transgenesis of very diverse species. [source] Utilizing endocrine secretory pathways in salivary glands for systemic gene therapeutics,JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2004Antonis Voutetakis Mammalian salivary glands are commonly used models of exocrine secretion. However, there is substantial experimental evidence showing the physiological existence of endocrine secretory pathways in these tissues. The use of gene transfer technology in vivo has allowed the unambiguous demonstration of these endocrine pathways. We and others have exploited such findings and evaluated salivary glands as possible target tissues for systemic applications of gene therapeutics. Salivary glands present numerous advantages for this purpose, including being well encapsulated, which limits extra-glandular vector dissemination, and having the luminal membranes of almost all parenchymal cells accessible via intraoral delivery of vectors through the main excretory ducts. Existing studies suggest that clinical benefits will result from salivary gland targeted systemic gene therapeutics. J. Cell. Physiol. 199: 1,7, 2004. Published 2003 Wiley-Liss, Inc. [source] Developing strategies for detection of gene dopingTHE JOURNAL OF GENE MEDICINE, Issue 1 2008Anna Baoutina Abstract It is feared that the use of gene transfer technology to enhance athletic performance, the practice that has received the term ,gene doping', may soon become a real threat to the world of sport. As recognised by the anti-doping community, gene doping, like doping in any form, undermines principles of fair play in sport and most importantly, involves major health risks to athletes who partake in gene doping. One attraction of gene doping for such athletes and their entourage lies in the apparent difficulty of detecting its use. Since the realisation of the threat of gene doping to sport in 2001, the anti-doping community and scientists from different disciplines concerned with potential misuse of gene therapy technologies for performance enhancement have focused extensive efforts on developing robust methods for gene doping detection which could be used by the World Anti-Doping Agency to monitor athletes and would meet the requirements of a legally defensible test. Here we review the approaches and technologies which are being evaluated for the detection of gene doping, as well as for monitoring the efficacy of legitimate gene therapy, in relation to the detection target, the type of sample required for analysis and detection methods. We examine the accumulated knowledge on responses of the body, at both cellular and systemic levels, to gene transfer and evaluate strategies for gene doping detection based on current knowledge of gene technology, immunology, transcriptomics, proteomics, biochemistry and physiology. Copyright © 2008 John Wiley & Sons, Ltd. [source] Use of gene transfer technology for functional studies in grapevineAUSTRALIAN JOURNAL OF GRAPE AND WINE RESEARCH, Issue 2010J.R. VIDAL Abstract The understanding of the genetic determinism of plant phenotypes requires the functional annotation of genes governing specific traits including the characterisation of their regulatory networks. A striking feature of the grapevine genome and proteome lies in the existence of large families related to wine attributes that have a higher gene copy number than in other sequenced plants. During speciation, the appearance of new adaptive functions is often based on the evolution of orthologous genes eventually associated with duplication (paralogous sequences) leading to new proteins and expression profiles. The presence of original features in grapevine, including perennial status, vegetative architecture, inflorescence/tendril, flower organisation (corolla), and fleshy fruit of considerable acidity with various flavonoid compounds, makes functional genomics an essential approach to link a gene to a trait. For grapevine, the current lack of high throughput genetic techniques (e.g. induced mutant collections) and the difficulties associated with genetic mapping (allele diversity, chimerism, generation time) highlights the critical role of transgenic technology for characterising gene function. Different techniques are available to obtain information about gene functioning, but the choice of a particular approach depends on the process investigated (e.g. metabolism, developmental, pathogen response) and the experimental purpose (e.g. induction of ectopic functions, promoter studies, subcellular localisation). After a brief overview of the development of grapevine biotechnology, this paper reviews the state-of-the-art gene transfer technology for grapevine and detailed examples of where transgenic technology has proven useful for studying gene function. [source] |