Transfer Factor (transfer + factor)

Distribution by Scientific Domains


Selected Abstracts


Normative reference values for lung transfer factor in Isfahan, Iran

RESPIROLOGY, Issue 4 2006
Babak AMRA
Objectives and background: Transfer factor or carbon monoxide diffusing capacity (DLCO) is a particularly valuable test of the appropriateness of gas exchange across the alveolocapillary membrane. The purpose of this study is to derive predictive equations for DLCO and its derivative volume-corrected DLCO (DLCO/VA) measured by single-breath method in a large non-smoking population sample in Isfahan. Methodology: We evaluated 1429 randomly selected subjects (732 men, aged 5,85 years). Gender-specific linear prediction equations were developed by multiple regression analysis; with measured DLCO, and DLCO/VA values (mmol/min/kPa), as dependent variables regressed against age (A), height (H) and body surface area (BSA). Results: For both genders, age had negative effects on DLCO, while height had a positive effect on DLCO and DLCO/VA (P < 0.01). The prediction equations for DLCO and DLCO/VA are: ,0.152 × height , 0.056 × age , 11.595' and ,,0.12 × age + 2.467', for men and: ,,0.035 × age , 0.133 × height , 10.707' and ,,0.012 × age , 0.02 × height + 2.755', for women, respectively. Conclusions: Our results therefore provide an original frame of reference for either DLCO or DLCO/VA in Iranian population, obtained from a standardized single-breath technique. [source]


Investigation into the nutritional status, dietary intake and smoking habits of patients with chronic obstructive pulmonary disease

JOURNAL OF HUMAN NUTRITION & DIETETICS, Issue 1 2004
W. J. Cochrane
Abstract Background and aims Weight loss and reduced fat-free mass are prevalent amongst patients with chronic obstructive pulmonary disease (COPD). However, the causes of this weight loss are not clear. The aims of this study are to investigate the factors affecting body weight and dietary intake in a group of outpatients with COPD, and to investigate any differences between adequately nourished and malnourished patients. Methods In 103 stable outpatients, nutritional status was assessed using Body Mass Index (BMI) and upper arm anthropometry. Lung function, smoking status, exercise tolerance, dietary intake, dietary problems and health-related quality of life were assessed. Patients were classed as either adequately nourished or malnourished. Results Twenty-three per cent of subjects were classed as malnourished. The malnourished subjects had lower lung function measurements, suffered more dietary problems and had lower nutritional intake compared with the adequately nourished subjects. They also had poorer fatigue scores. In linear regression analysis, the factors that had the most effect on BMI were a low transfer factor, presence of early satiety, and being a current smoker. Conclusion Important differences were found between adequately nourished and malnourished subjects. These differences move us closer to understanding how best to screen and treat this group of patients. [source]


Genotype x environment interaction in the uptake of Cs and Sr from soils by plants

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 1 2004
Alexei Melnitchouck
Abstract The soil-plant transfer factors for Cs and Sr were analyzed in relationship to soil properties, crops, and varieties of crops. Two crops and two varieties of each crop: lettuce (Lactuca sativa L.), cv. Salad Bowl Green and cv. Lobjoits Green Cos, and radish (Raphanus sativus L.), cv. French Breakfast 3 and cv. Scarlet Globe, were grown on five different soils amended with Cs and Sr to give concentrations of 1 mg kg,1 and 50,mg,kg,1 of each element. Soil-plant transfer coefficients ranged between 0.12,19.10 (Cs) and 1.48,146.10 (Sr) for lettuce and 0.09,13.24 (Cs) and 2.99,93.00 (Sr) for radish. Uptake of Cs and Sr by plants depended on both plant and soil properties. There were significant (P , 0.05) differences between soil-plant transfer factors for each plant type at the two soil concentrations. At each soil concentration about 60,% of the variance in the uptake of the Cs and Sr was due to soil properties. For a given concentration of Cs or Sr in soil, the most important factor effecting soil-plant transfer of these elements was the soil properties rather than the crops or varieties of crops. Therefore, for the varieties considered here, soil-plant transfer of Cs and Sr would be best regulated through the management of soil properties. At each concentration of Cs and Sr, the main soil properties effecting the uptake of Cs and Sr by lettuce and radish were the concentrations of K and Ca, pH and CEC. Together with the concentrations of contaminants in soils, they explained about 80,% of total data variance, and were the best predictors for soil-plant transfer. The different varieties of lettuce and radish gave different responses in soil-plant transfer of Cs and Sr in different soil conditions, i.e. genotype x environment interaction caused about 30,% of the variability in the uptake of Cs and Sr by plants. This means that a plant variety with a low soil-plant transfer of Cs and Sr in one soil could have an increased soil-plant transfer factor in other soils. The broad implications of this work are that in contaminated agricultural lands still used for plant growing, contaminant-excluding crop varieties may not be a reliable method for decreasing contaminant transfer to foodstuffs. Modification of soil properties would be a more reliable technique. This is particularly relevant to agricultural soils in the former USSR still affected by fallout from the Chernobyl disaster. Wechselwirkungen Genotyp x Umwelt im Hinblick auf die Aufnahme von Cs und Sr aus Böden durch Pflanzen Die Transferfaktoren von Cs und Sr vom Boden zur Pflanze wurden in Zusammenhang mit den Bodeneigenschaften, der Fruchtart und der Sorte untersucht. Zwei Fruchtarten mit je zwei Sorten: Salat (Lactua sativa L.) cv. Salad Bowl Green und cv. Lobjoits Green Cos, und Rettich (Raphanus sativus L.) cv. French Breakfast 3 und cv. Scarlet Globe, wurden in fünf verschiedenen Böden, die mit Cs und Sr in Konzentrationen von je 1 mg kg,1 und 50 mg kg,1 angereichert wurden, untersucht. Die Boden-Pflanze-Transferkoeffizienten variierten für Salat von 0,12,19,10 (Cs) und 1,48,146,1 (Sr) und für Rettich von 0,09,13,24 (Cs) und 2,99,93,00 (Sr). Die Aufnahme von Cs und Sr durch Pflanzen hängt sowohl von der Pflanze als auch von den Bodeneigenschaften ab. Es gab signifikante (P , 0,05) Unterschiede zwischen den Boden-Pflanze-Transferfaktoren für jede Pflanzensorte bei beiden Konzentrationen im Boden. Bei jeder Konzentration im Boden wurde die Varianz für die Aufnahme von Cs und Sr zu ca. 60,% von den Bodeneigenschaften bestimmt. Für jede vorgegebene Konzentration von Cs oder Sr im Boden wurde der Boden-Pflanze-Transfer mehr durch die Bodeneigenschaften beeinflusst als durch die Fruchtart oder Sorte. Daher ist der Transfer von Cs und Sr für die hier untersuchten Sorten am besten über eine Beeinflussung der Bodeneigenschaften steuerbar. Die Aufnahme in Rettich und Salat wurde für alle untersuchten Cs- und Sr-Konzentrationen am stärksten durch die K- und Ca-Konzentrationen, den pH-Wert und die KAK der jeweiligen Böden beeinflusst. Die Konzentrationen der Schadstoffe in Böden und die beschriebenen Bodeneigenschaften erklärten ca. 80,% die Gesamtdatenvarianz und sind die besten Voranzeiger für den Boden-Pflanze-Transfer. Die verschiedenen Salat- und Rettichsorten reagierten im Transport von Cs und Sr vom Boden zur Pflanze unterschiedlich auf die verschiedenen Bodeneigenschaften. So erklärte z.,B. die Wechselwirkung Genotyp x Umweltbedingungen ca. 30,% der Variabilität der Pflanzenaufnahme von Cs und Sr. Das bedeutet, dass eine Sorte, die auf einem Boden einen geringen Boden-Pflanze-Transfer von Cs und Sr aufweist, auf einem anderen Boden einen höheren Boden-Pflanze-Transfer aufweisen kann. Die wichtigste Erkenntnis dieser Untersuchung besteht darin, dass die Veränderung der Bodeneigenschaften im Vergleich zum Einsatz von Sorten mit einer geringen Cs- und Sr-Akkumulationsrate auf kontaminierten landwirtschaftlichen Standorten eine aussichtsreichere Methode sein könnte, um die Aufnahme von Cs und Sr in Nahrungsmittel zu minimieren. Diese Aussage ist besonders für landwirtschaftliche Flächen in der früheren UdSSR relevant, die durch die Katastrophe von Chernobyl kontaminiert wurden. [source]


Normative reference values for lung transfer factor in Isfahan, Iran

RESPIROLOGY, Issue 4 2006
Babak AMRA
Objectives and background: Transfer factor or carbon monoxide diffusing capacity (DLCO) is a particularly valuable test of the appropriateness of gas exchange across the alveolocapillary membrane. The purpose of this study is to derive predictive equations for DLCO and its derivative volume-corrected DLCO (DLCO/VA) measured by single-breath method in a large non-smoking population sample in Isfahan. Methodology: We evaluated 1429 randomly selected subjects (732 men, aged 5,85 years). Gender-specific linear prediction equations were developed by multiple regression analysis; with measured DLCO, and DLCO/VA values (mmol/min/kPa), as dependent variables regressed against age (A), height (H) and body surface area (BSA). Results: For both genders, age had negative effects on DLCO, while height had a positive effect on DLCO and DLCO/VA (P < 0.01). The prediction equations for DLCO and DLCO/VA are: ,0.152 × height , 0.056 × age , 11.595' and ,,0.12 × age + 2.467', for men and: ,,0.035 × age , 0.133 × height , 10.707' and ,,0.012 × age , 0.02 × height + 2.755', for women, respectively. Conclusions: Our results therefore provide an original frame of reference for either DLCO or DLCO/VA in Iranian population, obtained from a standardized single-breath technique. [source]


Comments on biota,sediment accumulation and trophic transfer factors for extremely hydrophobic polychlorinated biphenyls

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 9 2000
Lawrence P. Burkhard
No abstract is available for this article. [source]


Alpha-fetoprotein-specific transfer factors downregulate alpha-fetoprotein expression and specifically induce apoptosis in Bel7402 alpha-fetoprotein-positive hepatocarcinoma cells

HEPATOLOGY RESEARCH, Issue 7 2007
Hui Zhang
Aim:, To investigate the mechanisms of AFP-specific transfer factors (AFP-TF) in induced Bel7402 cells apoptosis. Further, we investigate the interaction between AFP-TF and AFP in the apoptosis. Methods:, Bel7402 and HepG2 AFP-positive hepatocarcinoma cell lines, SK-Hep-1 AFP-negative hepatocarcinoma cell line and Changliver normal liver cell line are used. Cell viability is evaluated by MTT assay and apoptosis is measured by Hoechst33342 staining and TUNEL assay. FACS is used to analyze the cell cycle. AFP expression is examined by RT-PCR, Western blotting and immunocytochemistry. The interaction between AFP-TF and AFP in the apoptosis is investigated by addition of AFP in cultures or AFP transfection in Bel7402 cells prior to AFP-TF treatment. Mitochondrial membrane potential (,,m) and intracellular Ca2+ concentration are respectively measured by Rhodamine123 and Fluo-3 AM Ester. Western blotting detects the involvement of several apoptosis-related proteins. Finally, caspase-3 and Caspase-9 activity are respectively examined. Results:, AFP-TF can induce apoptosis in Bel7402 and HepG2 AFP-positive hepatocarcinoma cells, but not SK-Hep-1 and Changliver cells. AFP-mRNA level changes little in apoptotic Bel7402 cells; while AFP expression is downregulated and uniformly dispersed throughout the whole cell. Addition of exogenous AFP or overexpression of intracellular AFP can reduce such apoptotic effect. Besides, apoptotic Bel7402 cells show a disruption of ,,m, an immediate elevation of Ca2+ concentration, a prominently decreased ratio of bcl-2 to bax, a release of cytochrome c from mitochondria to cytosol, and ultimately an activation of caspase-9 and caspase-3. Conclusion:, AFP-TF induced Bel7402 cells apoptosis is mitochondrial-dependent and is mediated by the interaction of AFP-TF with intracellular AFP. [source]


Genotype x environment interaction in the uptake of Cs and Sr from soils by plants

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 1 2004
Alexei Melnitchouck
Abstract The soil-plant transfer factors for Cs and Sr were analyzed in relationship to soil properties, crops, and varieties of crops. Two crops and two varieties of each crop: lettuce (Lactuca sativa L.), cv. Salad Bowl Green and cv. Lobjoits Green Cos, and radish (Raphanus sativus L.), cv. French Breakfast 3 and cv. Scarlet Globe, were grown on five different soils amended with Cs and Sr to give concentrations of 1 mg kg,1 and 50,mg,kg,1 of each element. Soil-plant transfer coefficients ranged between 0.12,19.10 (Cs) and 1.48,146.10 (Sr) for lettuce and 0.09,13.24 (Cs) and 2.99,93.00 (Sr) for radish. Uptake of Cs and Sr by plants depended on both plant and soil properties. There were significant (P , 0.05) differences between soil-plant transfer factors for each plant type at the two soil concentrations. At each soil concentration about 60,% of the variance in the uptake of the Cs and Sr was due to soil properties. For a given concentration of Cs or Sr in soil, the most important factor effecting soil-plant transfer of these elements was the soil properties rather than the crops or varieties of crops. Therefore, for the varieties considered here, soil-plant transfer of Cs and Sr would be best regulated through the management of soil properties. At each concentration of Cs and Sr, the main soil properties effecting the uptake of Cs and Sr by lettuce and radish were the concentrations of K and Ca, pH and CEC. Together with the concentrations of contaminants in soils, they explained about 80,% of total data variance, and were the best predictors for soil-plant transfer. The different varieties of lettuce and radish gave different responses in soil-plant transfer of Cs and Sr in different soil conditions, i.e. genotype x environment interaction caused about 30,% of the variability in the uptake of Cs and Sr by plants. This means that a plant variety with a low soil-plant transfer of Cs and Sr in one soil could have an increased soil-plant transfer factor in other soils. The broad implications of this work are that in contaminated agricultural lands still used for plant growing, contaminant-excluding crop varieties may not be a reliable method for decreasing contaminant transfer to foodstuffs. Modification of soil properties would be a more reliable technique. This is particularly relevant to agricultural soils in the former USSR still affected by fallout from the Chernobyl disaster. Wechselwirkungen Genotyp x Umwelt im Hinblick auf die Aufnahme von Cs und Sr aus Böden durch Pflanzen Die Transferfaktoren von Cs und Sr vom Boden zur Pflanze wurden in Zusammenhang mit den Bodeneigenschaften, der Fruchtart und der Sorte untersucht. Zwei Fruchtarten mit je zwei Sorten: Salat (Lactua sativa L.) cv. Salad Bowl Green und cv. Lobjoits Green Cos, und Rettich (Raphanus sativus L.) cv. French Breakfast 3 und cv. Scarlet Globe, wurden in fünf verschiedenen Böden, die mit Cs und Sr in Konzentrationen von je 1 mg kg,1 und 50 mg kg,1 angereichert wurden, untersucht. Die Boden-Pflanze-Transferkoeffizienten variierten für Salat von 0,12,19,10 (Cs) und 1,48,146,1 (Sr) und für Rettich von 0,09,13,24 (Cs) und 2,99,93,00 (Sr). Die Aufnahme von Cs und Sr durch Pflanzen hängt sowohl von der Pflanze als auch von den Bodeneigenschaften ab. Es gab signifikante (P , 0,05) Unterschiede zwischen den Boden-Pflanze-Transferfaktoren für jede Pflanzensorte bei beiden Konzentrationen im Boden. Bei jeder Konzentration im Boden wurde die Varianz für die Aufnahme von Cs und Sr zu ca. 60,% von den Bodeneigenschaften bestimmt. Für jede vorgegebene Konzentration von Cs oder Sr im Boden wurde der Boden-Pflanze-Transfer mehr durch die Bodeneigenschaften beeinflusst als durch die Fruchtart oder Sorte. Daher ist der Transfer von Cs und Sr für die hier untersuchten Sorten am besten über eine Beeinflussung der Bodeneigenschaften steuerbar. Die Aufnahme in Rettich und Salat wurde für alle untersuchten Cs- und Sr-Konzentrationen am stärksten durch die K- und Ca-Konzentrationen, den pH-Wert und die KAK der jeweiligen Böden beeinflusst. Die Konzentrationen der Schadstoffe in Böden und die beschriebenen Bodeneigenschaften erklärten ca. 80,% die Gesamtdatenvarianz und sind die besten Voranzeiger für den Boden-Pflanze-Transfer. Die verschiedenen Salat- und Rettichsorten reagierten im Transport von Cs und Sr vom Boden zur Pflanze unterschiedlich auf die verschiedenen Bodeneigenschaften. So erklärte z.,B. die Wechselwirkung Genotyp x Umweltbedingungen ca. 30,% der Variabilität der Pflanzenaufnahme von Cs und Sr. Das bedeutet, dass eine Sorte, die auf einem Boden einen geringen Boden-Pflanze-Transfer von Cs und Sr aufweist, auf einem anderen Boden einen höheren Boden-Pflanze-Transfer aufweisen kann. Die wichtigste Erkenntnis dieser Untersuchung besteht darin, dass die Veränderung der Bodeneigenschaften im Vergleich zum Einsatz von Sorten mit einer geringen Cs- und Sr-Akkumulationsrate auf kontaminierten landwirtschaftlichen Standorten eine aussichtsreichere Methode sein könnte, um die Aufnahme von Cs und Sr in Nahrungsmittel zu minimieren. Diese Aussage ist besonders für landwirtschaftliche Flächen in der früheren UdSSR relevant, die durch die Katastrophe von Chernobyl kontaminiert wurden. [source]