Home About us Contact | |||
Transcriptionally Active (transcriptionally + active)
Selected AbstractsFunctional and geographical differentiation of candidate balanced polymorphisms in Arabidopsis thalianaMOLECULAR ECOLOGY, Issue 13 2009JENNIFER M. REININGA Abstract Molecular population genetic analysis of three chromosomal regions in Arabidopsis thaliana suggested that balancing selection might operate to maintain variation at three novel candidate adaptive trait genes, including SOLUBLE STARCH SYNTHASE I (SSI), PLASTID TRANSCRIPTIONALLY ACTIVE 7(PTAC7), and BELL-LIKE HOMEODOMAIN 10 (BLH10). If balanced polymorphisms are indeed maintained at these loci, then we would expect to observe functional variation underlying the previously detected signatures of selection. We observe multiple replacement polymorphisms within and in the 32 amino acids just upstream of the protein,protein interacting BELL domain at the BLH10 locus. While no clear protein sequence differences are found between allele types in SSI and PTAC7, these two genes show evidence for allele-specific variation in expression levels. Geographical patterns of allelic differentiation seem consistent with population stratification in this species and a significant longitudinal cline was observed at all three candidate loci. These data support a hypothesis of balancing selection at all three candidate loci and provide a basis for more detailed functional work by identifying possible functional differences that might be selectively maintained. [source] Molecular cloning of the Matrix Gla Protein gene from Xenopus laevisFEBS JOURNAL, Issue 7 2002Functional analysis of the promoter identifies a calcium sensitive region required for basal activity To analyze the regulation of Matrix Gla Protein (MGP) gene expression in Xenopus laevis, we cloned the xMGP gene and its 5, region, determined their molecular organization, and characterized the transcriptional properties of the core promoter. The Xenopus MGP (xMGP) gene is organized into five exons, one more as its mammalian counterparts. The first two exons in the Xenopus gene encode the DNA sequence that corresponds to the first exon in mammals whereas the last three exons show homologous organization in the Xenopus MGP gene and in the mammalian orthologs. We characterized the transcriptional regulation of the xMGP gene in transient transfections using Xenopus A6 cells. In our assay system the identified promoter was shown to be transcriptionally active, resulting in a 12-fold induction of reporter gene expression. Deletional analysis of the 5, end of the xMGP promoter revealed a minimal activating element in the sequence from ,70 to ,36 bp. Synthetic reporter constructs containing three copies of the defined regulatory element delivered 400-fold superactivation, demonstrating its potential for the recruitment of transcriptional activators. In gel mobility shift assays we demonstrate binding of X. laevis nuclear factors to an extended regulatory element from ,180 to ,36, the specificity of the interaction was proven in competition experiments using different fragments of the xMGP promoter. By this approach the major site of factor binding was demonstrated to be included in the minimal activating promoter fragment from ,70 to ,36 bp. In addition, in transient transfection experiments we could show that this element mediates calcium dependent transcription and increasing concentrations of extracellular calcium lead to a significant dose dependent activation of reporter gene expression. [source] Transcriptionally active nuclei are selective in mature multinucleated osteoclastsGENES TO CELLS, Issue 10 2010Min-Young Youn Multinucleation is indispensable for the bone-resorbing activity of mature osteoclasts. Although multinucleation is evident in mature osteoclasts and certain other cell types, putative regulatory networks among nuclei remain poorly characterized. To address this issue, transcriptional activity of each nucleus in a multinucleated osteoclast was assessed by detecting the distributions of nuclear proteins by immunocytochemistry and primary transcripts by RNA FISH. Patterns of epigenetic histone markers governing transcription as well as localization of tested nuclear receptor proteins appeared indistinguishable among nuclei in differentiated Raw264 cells and mouse mature osteoclasts. However, RNAPII-Ser5P/2P and NFATc1 proteins were selectively distributed in certain nuclei in the same cell. Similarly, the distributions of primary transcripts for osteoclast-specific genes (Nfatc1, Ctsk and Acp5) as well as a housekeeping gene (beta-tubulin) were limited in certain nuclei within individual cells. By fusing two Raw264 cell lines that stably expressed ZsGreen-NLS and DsRed-NLS proteins, transmission of nuclear proteins across all of the nuclei in a cell could be observed, presumably through the shared cytoplasm. Taken together, we conclude that although nuclear proteins are diffusible among nuclei, only certain nuclei within a multinucleated osteoclast are transcriptionally active. [source] Human CYP11A1 promoter drives Cre recombinase expression in the brain in addition to adrenals and gonadsGENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 2 2007Hsu-Shui Wu Abstract The first step of steroid biosynthesis is catalyzed by cytochrome P450scc, encoded by CYP11A1. To achieve steroidogenic tissue-specific inactivation of genes in vivo by the Cre-loxP approach, we used the 4.4-kb regulatory region of the human CYP11A1 gene to drive Cre recombinase expression in the tissues that produce steroids. The resulting SCC-Cre mice express high levels of Cre in the adrenal cortex and gonads at the same sites as that for the endogenous CYP11A1 expression. In addition, Cre activity was found in the diencephalon and midbrain. In the developing brain, the Cre activity was first detected in the embryonic day 10.5. Our study is the first to show that the 4.4-kb CYP11A1 promoter is transcriptionally active in the brain in vivo. genesis 45:59,65, 2007. © 2007 Wiley-Liss, Inc. [source] Isotype class switching and the pathogenenesis of multiple myelomaHEMATOLOGICAL ONCOLOGY, Issue 2 2002J. A. L. Fenton Abstract Translocations at the immunoglobulin heavy chain locus (14q32) are now considered the commonest karyotypic change in multiple myeloma. These translocations are thought to be intimately involved in the pathogenesis of this disease. The heavy chain locus is strongly transcriptionally active in B and plasma cells and transfer of a potential oncogene to 14q32 would result in its dysregulation. Molecular characterization suggests that the majority of these breakpoints cluster in switch regions within the heavy chain locus. Switch regions are normally involved in the regulated process of isotype switching so that in myeloma the rearrangements are believed to be a result of so-called illegitimate (aberrant) switch recombination and are likely to be an early event in myeloma development. A legitimate switch recombination event occurs between two switch regions producing a hybrid switch; this is necessary for class switching to proceed on a productive allele. In this review we describe the process of isotype switching and how illegitimate class switching may be related to the pathogenesis of multiple myeloma. Copyright © 2001 John Wiley & Sons, Ltd. [source] Expression and role of Bcl-xL in human hepatocellular carcinomasHEPATOLOGY, Issue 1 2001Tetsuo Takehara Transformed hepatocytes survive various apoptotic insults during their growth in vivo. However, molecular mechanisms that inhibit apoptosis and support their survival are not well understood. In this study, we investigated the expression and role of Bcl-xL, an antiapoptotic member of the Bcl-2 family, in human hepatocellular carcinoma (HCC). The Bcl-xL protein was expressed in HepG2, Hep3B, and Huh7 human hepatoma cell lines at high levels, but none of these cells expressed Bcl-2. Down-modulation of Bcl-xL by antisense oligonucleotide activated apoptosis in HepG2 cells in response to cellular stresses induced by staurosporine treatment or by serum starvation. Ectopic expression of transcriptionally active p53 alone was not sufficient for the activation of apoptosis in p53 -null Hep3B cells, but apoptosis was induced when endogenous Bcl-xL was simultaneously inhibited by antisense oligonucleotide in these cells. Bcl-xL was expressed in all 20 surgically resected human HCC tissues when examined by Western blot analysis and immunohistochemistry, and levels of its expression were higher in a subset of HCC tissues than those of adjacent nontumor liver tissues or normal livers. We conclude that Bcl-xL expressed in human HCC cells inhibits apoptosis produced by various cellular stresses, such as staurosporine treatment, serum starvation, and p53 activation, and may play an important role in their survival. [source] L1 elements, processed pseudogenes and retrogenes in mammalian genomesIUBMB LIFE, Issue 12 2006Wenyong Ding Abstract Long interspersed nuclear elements 1 (L1 elements or LINE1) are the most active autonomous retrotransposons in mammalian genomes. In addition to L1 elements themselves, other protein-coding mRNAs can also be reverse transcribed and integrated into the genome through the L1-mediated retrotransposition, leading to the formation of processed pseudogenes (PPs) and retrogenes, both of which are characterized by the lack of introns and the presence of a 3' polyA tract and flanking direct repeats. PPs are unable to encode a functional protein and have accumulated frameshift mutations and premature stop codons during evolution. A few of PPs are transcriptionally active. Retrogenes preserve undisrupted coding frames and are capable of encoding a functional protein that is identical or nearly identical to that of the progenitor gene. There is a significant excess of retrogenes that originate from the X chromosome and are retrotransposed into autosomes, and most of these retrogenes are specially expressed in male germ cells, suggesting the inactivation of X-linked genes during male meiosis provides a strong selection pressure on retrogenes originating from the X chromosome. iubmb Life, 58: 677-685, 2006 [source] A microarray's view of life in the desert: adding a powerful evolutionary genomics tool to the packrat's middenMOLECULAR ECOLOGY, Issue 11 2009MARJORIE D MATOCQ Identifying the genetic architecture of adaptive traits is fundamental to understanding how organisms respond to their environment, over both ecological and evolutionary timeframes. Microarray technology that allows us to capture the simultaneous expression of thousands of genes provides unparalleled insight into how organisms cope with their environment at the transcriptional level. Recent studies in Molecular Ecology demonstrate how microarrays can rapidly identify which genes and pathways allow organisms to face some of the most fundamental physiological challenges posed by the environment, including compensation for the hypoxic and thermal stress of high-altitudes (Cheviron et al. 2008) and, in this issue, the biotransformation of toxic plant secondary compounds by mammals (Magnanou et al. 2009). Microarrays (Ekins et al. 1989; Fodor et al. 1991) are glass slides affixed with hundreds to thousands of oligonucleotide or cDNA sequences (probes). Messenger RNA transcripts (typically reverse transcribed to cDNA) are isolated from a tissue/sample of interest and hybridized to the array. Binding to specific probes indicates that a particular gene was transcriptionally active at or near the time of sampling and thus provides a potentially comprehensive measure of gene expression. Although a tremendously powerful tool, commercially produced oligonucleotide arrays are only available for a handful of model organisms. Nonetheless, evolutionary ecologists have exploited this resource by using a cross-species hybridization approach (e.g. Saetre et al. 2004), that is, hybridizing a model organism array with a nonmodel sample (Bar-Or et al. 2007). Magnanou et al. (2009) present a novel example of using a model muroid microarray (Agilent Technologies, Rattus) to study physiological response in a wild, nonmodel muroid, Neotoma. [source] Transcriptionally active transposable elements in recent hybrid sugarcaneTHE PLANT JOURNAL, Issue 5 2005Paula G. de Araujo Summary Transposable elements (TEs) are considered to be important components of the maintenance and diversification of genomes. The recent increase in genome sequence data has created an opportunity to evaluate the impact of these active mobile elements on the evolution of plant genomes. Analysis of the sugarcane transcriptome identified 267 clones with significant similarity to previously described plant TEs. After full cDNA sequencing, 68 sugarcane TE clones were assigned to 11 families according to their best sequence alignment against a fully characterized element. Expression was further investigated through a combined study utilizing electronic Northerns, macroarray, transient and stable sugarcane transformation. Newly synthesized cDNA probes from flower, leaf roll, apical meristem and callus tissues confirm previous results. Callus was identified as the tissue with the highest number of TEs being expressed, revealing that tissue culture drastically induced the expression of different elements. No tissue-specific family was identified. Different representatives within a TE family displayed differential expression patterns, showing that each family presented expression in almost every tissue. Transformation experiments demonstrated that most Hopscotch clone-derived U3 regions are, indeed, active promoters, although under a strong transcriptional regulation. This is a large-scale study about the expression pattern of TEs and indicates that mobile genetic elements are transcriptionally active in the highly polyploid and complex sugarcane genome. [source] Targeted Gene Expression Analysis in Hemimegalencephaly: Activation of ,-Catenin SignalingBRAIN PATHOLOGY, Issue 3 2005Jia Yu MD Hemimegalencephaly (HMEG) is a developmental brain malformation characterized by unilateral hemispheric enlargement, cytoarchitectural abnormalities, and an association with epilepsy. To define the developmental pathogenesis of HMEG, the expression of 200 cell signaling, growth, angiogenic, and transcription factor genes was assayed in HMEG samples (n = 8) with targeted cDNA arrays. Differential expression of 31 mRNAs across the 4 gene families was identified in HMEG compared with control cortex. Increases in growth and transcription factor genes included JNK-1, cyclic AMP response element binding protein (CREB), and tuberin mRNAs and decreases included insulin-like growth factor-1 (IGF-1), transforming growth factor ,-3 (TGF-,3), and NFkB mRNAs. Increased expression of cyclin D1, c-myc, and WISP-1 mRNAs in HMEG suggested activation of the Wnt-1/,-catenin cascade. Western analysis demonstrated increased levels of non-phosphorylated ,-catenin, which transcriptionally activates cyclin D1 and c-myc genes, but reduced levels of Ser33/Ser37/Thr41 phospho-,-catenin, which is essential for ,-catenin-inactivation, in HMEG. Altered expression of 31 mRNAs from 4 gene families in human HMEG may lead to aberrant cell growth and hemispheric enlargement during brain development. Enhanced cyclin D1 and c-myc transcription likely reflects increased transcriptionally active ,-catenin due to decreased Ser33/Ser37/Thr41 phospho-,-catenin and suggests activation of the Wnt-1/,-catenin cascade in HMEG. [source] |