Bermuda Grass (bermuda + grass)

Distribution by Scientific Domains


Selected Abstracts


Uptake of perchlorate by vegetation growing at field sites in arid and subhumid climates

REMEDIATION, Issue 4 2007
Dawit D. Yifru
Previous greenhouse and field studies show that terrestrial and aquatic vegetation, including trees, grasses, and agricultural produce grown on perchlorate-contaminated soil or with perchlorate-contaminated irrigation water, accumulate perchlorate mainly in their leaf tissue. The phytoaccumulated perchlorate poses potential ecological risk by either contaminating the food chain of humans and animals or recycling in the ecosystem as leaf litter fall that accumulates on topsoil. In this study, the uptake and phytoaccumulation of perchlorate in terrestrial and aquatic vegetation growing at two perchlorate-contaminated sites (the Longhorn Army Ammunition Plant [LHAAP] in Karnack, Texas, and the Las Vegas Wash [LVW], Nevada) was monitored during multiple growing seasons. The LHAAP site is located in a subhumid climate, while the LVW site is located in an arid climate. All vegetation species collected from both sites contained quantifiable levels of perchlorate. The detected concentrations varied with the type of plant species, amount of perchlorate concentration in soil, and season and stage of plant maturity. The highest perchlorate concentrations were measured in willows (Salix nigra), crabgrass (Digitaria spp.), and Bermuda grass (Cynodon dactylon) at the LHAAP, while salt cedar (Tamarix ramosissima) at the LVW phytoaccumulated the highest mass of perchlorate. The concentrations of perchlorate measured in plant leaves growing over contaminated soils at multiple LHAAP locations did not reveal the strong seasonal variability observed at the LVW site. The slow rate of phytodegradation of the perchlorate fraction taken up by plants during the growing season explained the detection of higher perchlorate concentrations in leaves collected later in the growing season (fall) and in senesced leaves compared to younger, live leaves. This proves that senesced plant leaves potentially recycle perchlorate back into the soil on which plant litter collects. To minimize the potential recycling of perchlorate during phytoremediation, it is recommended that senesced leaves be collected and composted or phytoremediation be designed to enhance rapid rhizodegradation (rhizoremediation). © 2007 Wiley Periodicals, Inc. [source]


Vegetation Response to Lime and Manure Compost Amendments on Acid Lead/Zinc Mine Tailings: A Greenhouse Study

RESTORATION ECOLOGY, Issue 3 2000
Z. H. Ye
Abstract Land disturbed by mining in China is a serious problem and lead/zinc (Pb/Zn) mine tailings constitute the majority of the metal mine tailings produced in Guangdaong Province, China. A greenhouse study was therefore conducted to evaluate the effects of lime (40, 80, 120, and 160 t/ha) and manure compost (50 and 100 t/ha) amendment on the revegetation of the Pb/Zn mine tailings using Cynodon dactylon (Bermuda grass) and Agropyron elongatum (tall wheatgrass). The results showed that a combination of lime and manure compost amendment together with deionized water leachating was able to increase pH, reduce electrical conductivity and diethylenetraminepentaacetic acid (DTPA)-extractable concentrations of Zn and Pb in tailings. Using 80 t/ha lime amendment with the supplement of fertilizer or manure compost was able to effectively improve germination of both C. dactylon and A. elongatum. The highest dry weight yields were obtained in tailings receiving 80 t lime/ha and 100 t manure compost/ha for both plant species. Plant tissue analysis showed that lime amendment at 120,160 t/ha reduced Zn accumulation in both shoot and root of C. dactylon. However, this trend was not observed for Pb. [source]


Revegetation of Pb/Zn Mine Tailings, Guangdong Province, China

RESTORATION ECOLOGY, Issue 1 2000
Z. H. Ye
The Lechang lead/zinc mine is located in the north part of Guangdong Province, southern China. The tailings residue from the extraction of lead/zinc ores was permanently stored in tailings ponds, which required revegetation to reduce the environmental impact. A field study was, therefore, conducted to evaluate the effects of different ameliorants, including: (1) pig manure (PM); (2) mushroom compost (MC); (3) burnt coal residue (BC); (4) fly ash (FA); and (5) surface soil on the growth of Agropyron elongatum (tall wheat grass), Cynodon dactylon (Bermuda grass), Lolium multiflorum (Italian ryegrass), and Trifolium repens (clover) in the tailings residue. The results from the core profiles indicated that adding FA (10 cm) or BC (15 cm) as a barrier layer between the cover soil and the tailings could increase pH, compared to the treatment with soil only. C. dactylon grew well and had a high cover (90,100%) in all the treatment plots except the control plots without any amendment. A. elongatum and L. multiflorum had a higher cover when grown in plots covered with a barrier layer using FA or BC (both with surface soil), than those grown in plots covered with surface soil only. Treatment plots receiving a thicker soil cover (30 cm) had a better dry weight yield than those with a thinner soil cover (15 cm), regardless of the barrier layer. The results from this study indicate that the use of either 15 cm BC or 10 cm FA as a barrier layer with surface soil, or the use of 38 tonnes PM/ha and 6 cm MC, were effective for the revegetation of Pb/Zn mine tailings. C. dactylon was the best species among the four species used for revegetation. Key words: reclamation, Pb/Zn mine tailings, burnt coal, mushroom compost, fly ash, Bermuda grass, Italian ryegrass, clover. [source]


Fungal biodegradation of hard coal by a newly reported isolate, Neosartorya fischeri

BIOTECHNOLOGY JOURNAL, Issue 11 2008
Eric E. Igbinigie
Abstract Cynodon dactylon (Bermuda grass) has been observed to grow sporadically on the surface of coal dumps in the Witbank coal mining area of South Africa. Root zone investigation indicated that a number of fungal species may be actively involved in the biodegradation of hard coal, thus enabling the survival of the plant, through mutualistic interaction, in this extreme environment. In an extensive screening program of over two thousand samples, the Deuteromycete, Neosartorya fischeri, was isolated and identified. The biodegradation of coal by N. fischeri was tested in flask studies and in a perfusion fixed-bed bioreactor used to simulate the coal dump environment. The performance of N. fischeri was compared to Phanaerochaete chrysosporium and Trametes (Polyporus) versicolor, previously described in coal biodegradation studies. Fourier transform infrared spectrometry and pyrolysis gas chromatography mass spectrometry of the biodegradation product indicated oxidation of the coal surface and nitration of the condensed aromatic structures of the coal macromolecule as possible reaction mechanisms in N. fischeri coal biodegradation. This is a first report of N. fischeri -mediated coal biodegradation and, in addition to possible applications in coal biotechnology, the findings may enable development of sustainable technologies in coal mine rehabilitation. [source]


Which aeroallergens are associated with eczema severity?

CLINICAL & EXPERIMENTAL DERMATOLOGY, Issue 4 2007
K. L. E. Hon
Summary We investigated if a correlation exists between aeroallergen sensitization and the severity of eczema. Data on aeroallergen response to skin-prick testing (SPT) and disease severity of children with eczema (n = 119) were evaluated. Atopy, as defined by at least one positive response to aeroallergen skin prick testing, was found in >,90% of eczema patients. House dust mite was the most commonly sensitized aeroallergen, followed by cat fur. Dermatophagoides pteronyssinus and Dermatophagoides farinae sensitization were associated with eczema severity (present in 67% of the mild and 97% of the severe group; P = 0.001). However, there was no association between eczema severity and higher strengths of SPT response (defined as SPT > 1+ to dust mites or dust). Atopy to moulds, Bermuda grass, cockroach, cat and dog was less prevalent and was not associated with eczema severity. It is sensible to advise parents on specific avoidance strategies only in severely affected children who have a definitive history of eczema exacerbation by specific aeroallergens and who are not responsive to conventional treatment. [source]


Reducing salinity and organic contaminants in the Pearl Harbor dredged material using soil amendments and plants

REMEDIATION, Issue 4 2002
N. V. Hue
Phytoremediation is an emerging technique that can be used to economically remediate sites contaminated with trace elements and/or man-made organic contaminants. This technique was used on Pearl Harbor (Oahu, Hawaii) dredged material (PHDM) containing polycyclic aromatic hydrocarbons (PAHs) and some heavy metals. The dredged material was first amended with a high-calcium soil (Waialua Mollisol) and a biosolids-based compost at different proportions to yield varying salinity levels. A mixture that yielded an electrical conductivity (EC, a measure of salinity) of the saturated paste extract of 15 to 20 dS/m was identified and used to evaluate the salt tolerance of five plant species. Relative germination and one-month-old biomass indicated that common bermuda grass (Cynodon dactylon), seashore paspalum (Paspalum vaginatum), beach pea (Vigna marina), and cow pea (Vigna unguiculata) can produce at least 40 percent of biomass of the control at an EC of approximately 18 dS/m, suggesting the four plants are relatively salt tolerant. In contrast, Desmodium intortum either did not germinate or died within two weeks after germination at the same salinity level. A subsequent greenhouse experiment, using mixtures of the PHDM (0 or 25 percent dry weight), organic amendments (10 percent leucaena green manure or biosolids-based compost), and a Mollisol (65 or 90 percent dry weight) in 6-liter pots containing 4 kilograms of material yielded the following results: (1) A combination of transplanted seashore paspalum, seeded bermuda grass, and seeded beach pea was effective in taking up sodium (Na), thereby reducing salinity and making the medium more amenable to diversified microbes and plants, which may be effective PAH degraders; (2) total PAH concentration was reduced by about 30 percent after three months of active plant growth, but degradation of individual PAH members varied significantly, however; (3) leguminous green manure, as a soil amendment, was more effective than compost for use in bio- and/or phytoremediations; and (4) soil amendments, when applicable, could supplement living plants in reducing organic contaminants, such as PAHs. © 200 Wiley Periodicals, Inc. [source]