Home About us Contact | |||
Behavioural Level (behavioural + level)
Selected AbstractsRepeated withdrawal from ethanol spares contextual fear conditioning and spatial learning but impairs negative patterning and induces over-responding: evidence for effect on frontal cortical but not hippocampal function?EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2006Gilyana G. Borlikova Abstract Repeated exposure of rats to withdrawal from chronic ethanol reduces hippocampal long-term potentiation and gives rise to epileptiform-like activity in hippocampus. We investigated whether such withdrawal experience also affects learning in tasks thought to be sensitive to hippocampal damage. Rats fed an ethanol-containing diet for 24 days with two intermediate 3-day withdrawal episodes, resulting in intakes of 13,14 g/kg ethanol per day, showed impaired negative patterning discrimination compared with controls and animals that had continuous 24-day ethanol treatment, but did not differ from these animals in the degree of contextual freezing 24 h after training or in spatial learning in the Barnes maze. Repeatedly withdrawn animals also showed increased numbers of responses in the period immediately before reinforcement became available in an operant task employing a fixed-interval schedule although overall temporal organization of responding was unimpaired. Thus, in our model of repeated withdrawal from ethanol, previously observed changes in hippocampal function did not manifest at the behavioural level in the tests employed. The deficit seen after repeated withdrawal in the negative patterning discrimination and over-responding in the fixed-interval paradigm might be related to the changes in the functioning of the cortex after withdrawal. [source] Rapid reversal of stress induced loss of synapses in CA3 of rat hippocampus following water maze trainingEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2003Carmen Sandi Abstract The impact was examined of exposing rats to two life experiences of a very different nature (stress and learning) on synaptic structures in hippocampal area CA3. Rats were subjected to either (i) chronic restraint stress for 21 days, and/or (ii) spatial training in a Morris water maze. At the behavioural level, restraint stress induced an impairment of acquisition of the spatial response. Moreover, restraint stress and water maze training had contrasting impacts on CA3 synaptic morphometry. Chronic stress induced a loss of simple asymmetric synapses [those with an unperforated postsynaptic density (PSD)], whilst water maze learning reversed this effect, promoting a rapid recovery of stress-induced synaptic loss within 2,3 days following stress. In addition, in unstressed animals a correlation was found between learning efficiency and the density of synapses with an unperforated PSD: the better the performance in the water maze, the lower the synaptic density. Water maze training increased the number of perforated synapses (those with a segmented PSD) in CA3, both in stressed and, more notably, in unstressed rats. The distinct effects of stress and learning on CA3 synapses reported here provide a neuroanatomical basis for the reported divergent effects of these experiences on hippocampal synaptic activity, i.e. stress as a suppressor and learning as a promoter of synaptic plasticity. [source] Neural correlates of deficient response inhibition in mentally disordered violent individualsBEHAVIORAL SCIENCES & THE LAW, Issue 1 2008Ian Barkataki Ph.D. In this study, response inhibition and associated neural activation during a motor inhibition paradigm were investigated in (i) men with antisocial personality disorder (APD) with a history of violence (n,=,14), (ii) men with schizophrenia with a history of violence (n,=,12), (iii) men with schizophrenia without a history of violence (n,=,12), and (iv) healthy control subjects (n,=,14) using functional magnetic resonance imaging (fMRI). At the behavioural level, individuals with schizophrenia showed impaired performance across all conditions, whereas an increased error rate was seen in the APD group only during the conditions requiring inhibition. At the neural level, both violent groups showed reduced thalamic activity, compared with controls, in association with modulation of inhibition by task demands. In addition, the violent schizophrenia group, compared with controls, showed reduced activity in the caudate nucleus during the condition requiring inhibition. It is concluded that violence may not be specifically associated with impaired voluntary inhibition in schizophrenia but this is likely in APD. Reduced thalamic function, perhaps due to its known association with sensorimotor disturbances, is implicated in violent behaviour across both disorders. In addition, caudate dysfunction may contribute, given its role in timing and temporal processing as well as suppression of motor actions, to deficient inhibition and violent behaviour in schizophrenia. Copyright © 2008 John Wiley & Sons, Ltd. [source] Annotation: Deconstructing the attention deficit in fragile X syndrome: a developmental neuropsychological approachTHE JOURNAL OF CHILD PSYCHOLOGY AND PSYCHIATRY AND ALLIED DISCIPLINES, Issue 6 2004K.M. Cornish Background:, Fragile X syndrome is one of the world's leading hereditary causes of developmental delay in males. The past decade has witnessed an explosion of research that has begun to unravel the condition at its various levels: from the genetic and brain levels to the cognitive level, and then to the environmental and behavioural levels. Our aim in this review is to attempt to integrate some of the extensive body of knowledge to move the research a step closer to understanding how the dynamics of atypical development can influence the specific cognitive and behavioural end-states frequently observed in children and adolescents with fragile X syndrome. Methods:, We conducted a review of the current neuropsychological and neuropsychiatric approaches that have attempted to delineate the pattern of ,spared' and ,impaired' functions associated with the phenotype. Results:, The profile of findings suggests that fragile X syndrome should not be viewed merely as a catalogue of spared and impaired cognitive functions or modules. Instead, there appears to be a process of almost gradual modularisation whereby cognitive mechanisms become domain specific as a function of development itself (Karmiloff-Smith, 1992). The results of a decade of intense research point towards an early weakness in one or more components of executive control rather than single, static higher-level deficits (e.g., spatial cognition, speech processing). This weakness affects both the development of more complex functions and current performance. Conclusions:, The prevailing tendency to interpret developmental disorders in terms of fixed damage to distinct modular functions needs to be reconsidered. We offer this review as an example of an alternative approach, attempting to identify an initial deficit and its consequences for the course of development. Through better definition of the cognitive and behavioural phenotype, in combination with current progress in brain imaging techniques and molecular studies, the next decade should continue to hold exciting promise for fragile X syndrome and other neurodevelopmental disorders. [source] |