Home About us Contact | |||
Behavioral Testing (behavioral + testing)
Selected AbstractsThe effects of local perfusion of DAMGO on extracellular GABA and glutamate concentrations in the rostral ventromedial medullaJOURNAL OF NEUROCHEMISTRY, Issue 3 2008Raf Jan-Filip Schepers Abstract Electrophysiological data suggest an involvement of rostral ventromedial medulla (RVM) GABA and glutamate (GLU) neurons in morphine analgesia. Direct evidence that extracellular concentrations of GABA or GLU are altered in response to mu opioid receptor (MOP-R) activation is, however, lacking. We used in vivo microdialysis to investigate this issue. Basal GABA overflow increased in response to intra-RVM perfusion of KCl (60 mmol/L). Reverse microdialysis of the MOP-R agonist d -Ala(2),NMePhe(4),Gly-ol(5)]enkephalin (DAMGO) (20,500 ,mol/L) produced a concentration-dependent decrease of RVM GABA overflow. Behavioral testing revealed that concentrations that decreased GABA levels increased thermal withdrawal thresholds. A lower agonist concentration that did not increase GABA failed to alter thermal thresholds. DAMGO did not alter GLU concentrations. However, KCl also failed to modify GLU release. Since rapid, transporter-mediated uptake may mask the detection of changes in GLU release, the selective excitatory amino acid transporter inhibitor pyrrolidine-2,4-dicarboxylic acid (tPDC, 0.6 mmol/L) was added to the perfusion medium for subsequent studies. tPDC increased GLU concentrations, confirming transport inhibition. KCl increased GLU dialysate levels in the presence of tPDC, demonstrating that transport inhibition permits detection of depolarization-evoked GLU overflow. In the presence of tPDC, DAMGO increased GLU overflow in a concentration-dependent manner. These data demonstrate that MOP-R activation decreases GABA and increases GLU release in the RVM. We hypothesize that the opposing effects of MOP-R on GLU and GABA transmission contribute to opiate antinociception. [source] Aucubin prevents loss of hippocampal neurons and regulates antioxidative activity in diabetic encephalopathy ratsPHYTOTHERAPY RESEARCH, Issue 7 2009Hong-Yu Xue Abstract In this study, the neuroprotection of aucubin and its mechanism were evaluated in the rat model of diabetic encephalopathy. Diabetes mellitus (DM) rats were stratified by cognitive capability (CC), and assigned to four treatment groups for aucubin treatment (doses of 0, 1, 5 or 10 mg/kg aucubin), with a further two groups of non-DM rats ranked by CC as controls for aucubin (doses of 0 or 5 mg/kg aucubin). Neuroprotection was estimated by the indexes of behavior and histology. Behavioral testing was performed in a Y-maze. The surviving neurons in CA1,CA4 and subiculum (SC) of the hippocampus were counted under a microscope. In addition, the apoptotic neurons in the CA1 of the hippocampus were also examined by using TUNEL staining. In order to clarify the mechanism of aucubin's neuroprotection, the activities of endogenous antioxidants and nitric oxide synthase (NOS) together with the content of lipid peroxide in the hippocampus were assayed. The results proved that aucubin significantly reduced the content of lipid peroxide, regulated the activities of antioxidant enzymatic and decreased the activity of NOS. All these effects indicated that aucubin was a potential neuroprotective agent and its neuroprotective effects were achieved, at least in part, by promoting endogenous antioxidant enzymatic activities. Copyright © 2009 John Wiley & Sons, Ltd. [source] Curiosity and cure: Translational research strategies for neural repair-mediated rehabilitationDEVELOPMENTAL NEUROBIOLOGY, Issue 9 2007Bruce H. Dobkin Abstract Clinicians who seek interventions for neural repair in patients with paralysis and other impairments may extrapolate the results of cell culture and rodent experiments into the framework of a preclinical study. These experiments, however, must be interpreted within the context of the model and the highly constrained hypothesis and manipulation being tested. Rodent models of repair for stroke and spinal cord injury offer examples of potential pitfalls in the interpretation of results from developmental gene activation, transgenic mice, endogeneous neurogenesis, cellular transplantation, axon regeneration and remyelination, dendritic proliferation, activity-dependent adaptations, skills learning, and behavioral testing. Preclinical experiments that inform the design of human trials ideally include a lesion of etiology, volume and location that reflects the human disease; examine changes induced by injury and by repair procedures both near and remote from the lesion; distinguish between reactive molecular and histologic changes versus changes critical to repair cascades; employ explicit training paradigms for the reacquisition of testable skills; correlate morphologic and physiologic measures of repair with behavioral measures of task reacquisition; reproduce key results in more than one laboratory, in different strains or species of rodent, and in a larger mammal; and generalize the results across several disease models, such as axonal regeneration in a stroke and spinal cord injury platform. Collaborations between basic and clinical scientists in the development of translational animal models of injury and repair can propel experiments for ethical bench-to-bedside therapies to augment the rehabilitation of disabled patients. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007 [source] Early behavioral screening for antidepressants and anxiolyticsDRUG DEVELOPMENT RESEARCH, Issue 9 2006Vincent Castagné Abstract Early preclinical behavioral testing is an essential stage during the development of substances with potential antidepressant and/or anxiolytic activity. With the growing cost of drug development, optimal research strategies are needed to detect potential new treatments with high efficacy and minimal side effects and to confirm in vitro pharmacological studies. In the following article, we present simple rodent tests used for early behavioral testing for antidepressant-like and anxiolytic-like activity. Unpublished results from our laboratory are discussed with reference to published data to illustrate the predictive validity of several behavioral screening tests. Drug Dev. Res. 67:729,742, 2006. © 2006 Wiley-Liss, Inc. [source] Cortical auditory dysfunction in benign rolandic epilepsyEPILEPSIA, Issue 6 2008Dana F. Boatman Summary Purpose: To evaluate cortical auditory function, including speech recognition, in children with benign rolandic epilepsy (BRE). Methods: Fourteen children, seven patients with BRE and seven matched controls, underwent audiometric and behavioral testing, simultaneous EEG recordings, and auditory-evoked potential recordings with speech and tones. Speech recognition was tested under multiple listening conditions. Results: All participants demonstrated normal speech recognition abilities in quiet, as well as normal peripheral and subcortical auditory function. BRE patients performed significantly worse than controls when speech recognition was tested under adverse listening conditions, including background noise. Five BRE patients who were impaired on two or more tests had centrotemporal spiking on awake EEG. There were no significant group differences in the latency or amplitude of early N100 cortical responses to speech or tones. Conversely, the mismatch negativity, a preattentive index of cortical processing that is elicited passively, was absent or prolonged for speech, but not tones, in BRE patients as compared to controls. Discussion: Children with BRE demonstrated specific speech recognition impairments. Our evoked potential findings indicate that these behavioral impairments reflect dysfunction of nonprimary auditory cortex and cannot be attributed solely to attention difficulties. A possible association between auditory impairments and centrotemporal spiking (>1/min) on awake EEG was identified. The pattern of speech recognition impairments observed is a known risk factor for academic difficulties in school-age children. Our results underscore the importance of comprehensive auditory testing, using behavioral and electrophysiological measures, in children with BRE. [source] Role of histamine in short- and long-term effects of methamphetamine on the developing mouse brainJOURNAL OF NEUROCHEMISTRY, Issue 4 2008Summer F. Acevedo Abstract With the rise in methamphetamine (MA) use among women of childbearing age, the potential consequences of MA exposure to the developing brain for cognition in adulthood is a major concern. Histamine might mediate these MA effects. Following MA administration in neonatal mice, histamine levels in brain were elevated and the hypothalamic-pituitary-adrenal axis was activated. Co-administration of MA with the H3 receptor agonist immepip antagonized these effects. The effects of MA on histamine levels and on hypothalamic-pituitary-adrenal axis activation at P20 were more pronounced in female than male mice. These sex differences could have contributed to the increased susceptibility of female mice to the detrimental long-term cognitive effects of MA and the H3/H4 antagonist thioperamide. Following behavioral testing, mice neonatally treated with MA or thioperamide showed reduced levels of the dendritic marker microtubule-associated protein 2 in the CA3 region of the hippocampus and the enthorhinal cortex. This was not seen in mice neonatally treated with immepip and MA who did not show cognitive impairments, suggesting that these brain areas might be particularly important for the long-term effects of MA on cognitive function. These data support a role for histamine in the effects of MA on the developing brain. [source] Primary afferent dendrite degeneration as a cause of tinnitusJOURNAL OF NEUROSCIENCE RESEARCH, Issue 7 2007Carol A. Bauer Abstract Chronic tinnitus affects millions of people, but the mechanisms responsible for the development of this abnormal sensory state remain poorly understood. This study examined the type and extent of cochlear damage that occurs after acoustic trauma sufficient to induce chronic tinnitus in rats. Tinnitus was evaluated by using a conditioned suppression method of behavioral testing. Cochlear damage was assessed 6 months after acoustic trauma. There was minimal loss of inner and outer hair cells in the exposed cochleas of subjects demonstrating evidence of tinnitus. However, a significant loss of large-diameter fibers in the osseous spiral lamina of exposed cochleas of trauma subjects was observed. The significance of this finding in the context of a model of tinnitus is discussed. © 2007 Wiley-Liss, Inc. [source] Zebrafish Cx35: Cloning and characterization of a gap junction gene highly expressed in the retinaJOURNAL OF NEUROSCIENCE RESEARCH, Issue 6 2003Elizabeth McLachlan Abstract The vertebrate connexin gene family encodes protein subunits of gap junction channels, which provide a route for direct intercellular communication. Consequently, gap junctions play a vital role in many developmental and homeostatic processes. Aberrant functioning of gap junctions is implicated in many human diseases. Zebrafish are an ideal vertebrate model to study development of the visual system as they produce transparent embryos that develop rapidly, thereby facilitating morphological and behavioral testing. In this study, zebrafish connexin35 has been cloned from a P1 artificial chromosome (PAC) library. Sequence analysis shows a high degree of similarity to the Cx35/36 orthologous group, which are expressed primarily in nervous tissue, including the retina. The gene encodes a 304-amino acid protein with a predicted molecular weight of approximately 35 kDa. Injection of zebrafish Cx35 RNA into paired Xenopus oocytes elicited intercellular electrical coupling with weak voltage sensitivity. In development, Cx35 is first detectable by Northern analysis and RT-PCR, at 2 days post-fertilization (2 dpf), and in the adult it is expressed in the brain and retina. Immunohistochemical analysis revealed that the Cx35 protein is expressed in two sublaminae of the inner plexiform layer of the adult retina. A similar pattern was seen in the 4 and 5 dpf retina, but no labeling was detected in the retina of earlier embryos. © 2003 Wiley-Liss, Inc. [source] Riluzole prolongs survival time and alters nuclear inclusion formation in a transgenic mouse model of Huntington's diseaseMOVEMENT DISORDERS, Issue 4 2002Johannes Schiefer MD Abstract Glutamate excitotoxicity has been suggested to contribute to the pathogenesis of Huntington's disease (HD). Riluzole is a substance with glutamate antagonistic properties that is used for neuroprotective treatment in amyotrophic lateral sclerosis and which is currently tested in clinical trials for treatment of HD. R6/2 transgenic mice, which express exon 1 of the human HD gene with an expanded CAG triplet repeat, serve as a well-characterized mouse model for HD with progressing neurological abnormalities and limited survival. We treated R6/2 HD transgenic mice with riluzole orally beginning at a presymptomatic stage until death to investigate its potential neuroprotective effects in this mouse model and found that survival time in the riluzole group was significantly increased in comparison to placebo-treated transgenic controls. Additionally, the progressive weight loss was delayed and significantly reduced by riluzole treatment; behavioral testing of motor coordination and spontaneous locomotor activity, however, showed no statistically significant differences. We also examined the formation of the HD characteristic neuronal intranuclear inclusions (NII) immunohistologically. At a late disease stage, striatal NII from riluzole-treated transgenic mice showed profound changes in ubiquitination, i.e., NII were less ubiquitinated and surrounded by ubiquitinated micro-aggregates. Staining with antibodies directed against the mutated huntingtin revealed no significant difference in this component of NII. Taken together, these data suggest that riluzole is a promising candidate for neuroprotective treatment in human HD. © 2002 Movement Disorder Society [source] Auditory function and hearing loss in children and adults with Williams syndrome: Cochlear impairment in individuals with otherwise normal hearing,AMERICAN JOURNAL OF MEDICAL GENETICS, Issue 2 2010Jeffrey A. Marler Abstract Hearing loss is common in school-age individuals with Williams syndrome (WS) and extensive in adults. Prior studies with relatively small sample sizes suggest that hearing loss in WS has an early onset and may be progressive, yet the auditory phenotype and the scope of the hearing loss have not been adequately characterized. We used standard audiometric tools: Otoscopy, tympanometry, air-conduction (bone conduction when available) behavioral testing, and distortion product otoacoustic emissions (DPOAEs) to measure hearing sensitivity and outer hair cell function. We tested 81 individuals with WS aged 5.33,59.50 years. Sixty-three percent of the school-age and 92% of the adult participants had mild to moderately-severe hearing loss. The hearing loss in at least 50% was sensorineural. DPOAE testing corroborated behavioral results. Strikingly, 12 of 14 participants with hearing within normal limits bilaterally had 4,000-Hz DPOAE input/output (DPOAE IO) functions indicative of outer hair cell damage and impaired cochlear compression. Our results indicate that hearing loss is very common in WS. Furthermore, individuals with WS who have "normal" hearing as defined by behavioral thresholds may actually have sub-clinical impairments or undetected cochlear pathology. Our findings suggest outer hair cell dysfunction in otherwise normal hearing individuals. The DPOAE IO in this same group revealed growth functions typically seen in groups with noise-induced damage. Given this pattern of findings, individuals with WS may be at increased risk of noise-induced hearing loss. Recommendations regarding audiological testing for individuals with WS and accommodations for these individuals in both academic and nonacademic settings are provided. © 2010 Wiley-Liss, Inc. [source] Differential effects of high-frequency repetitive transcranial magnetic stimulation over ipsilesional primary motor cortex in cortical and subcortical middle cerebral artery stroke,ANNALS OF NEUROLOGY, Issue 3 2009Mitra Ameli MD Objective Facilitation of cortical excitability of the ipsilesional primary motor cortex (M1) may improve dexterity of the affected hand after stroke. The effects of 10Hz repetitive transcranial magnetic stimulation (rTMS) over ipsilesional M1 on movement kinematics and neural activity were examined in patients with subcortical or cortical stroke. Methods Twenty-nine patients with impaired dexterity after stroke (16 subcortical middle cerebral artery [MCA] strokes, 13 MCA strokes involving subcortical tissue and primary or secondary cortical sensorimotor areas) received 1 session of 10Hz rTMS (5-second stimulation, 25-second break, 1,000 pulses, 80% of the resting motor threshold) applied over: 1) ipsilesional M1 and 2) vertex (control stimulation). For behavioral testing, 29 patients performed index finger and hand tapping movements with the affected and unaffected hand prior to and following each rTMS application. For functional magnetic resonance imaging, 18 patients performed index finger tapping movements with the affected and unaffected hand before and after each rTMS application. Results Ten-Hz rTMS over ipsilesional M1, but not over vertex, improved movement kinematics in 14 of 16 patients with subcortical stroke, but not in patients with additional cortical stroke. Ten-Hz rTMS slightly deteriorated dexterity of the affected hand in 7 of 13 cortical stroke patients. At a neural level, rTMS over ipsilesional M1 reduced neural activity of the contralesional M1 in 11 patients with subcortical stroke, but caused a widespread bilateral recruitment of primary and secondary motor areas in 7 patients with cortical stroke. Activity in ipsilesional M1 at baseline correlated with improvement of index finger tapping frequency induced by rTMS. Interpretation The beneficial effects of 10Hz rTMS over ipsilesional M1 on motor function of the affected hand depend on the extension of MCA stroke. Neural activity in ipsilesional M1 may serve as a surrogate marker for the effectiveness of facilitatory rTMS. Ann Neurol 2009;66:298,309 [source] Irradiation attenuates neurogenesis and exacerbates ischemia-induced deficitsANNALS OF NEUROLOGY, Issue 3 2004Jacob Raber PhD Increased neurogenesis after cerebral ischemia suggests that functional recovery after stroke may be attributed, in part, to neural regeneration. In this study, we investigated the role of neurogenesis in the behavioral performance of gerbils after cerebral global ischemia. We used ionizing radiation to decrease neural regeneration, and 2 weeks later cerebral global ischemia was induced by bilateral common carotid artery occlusion. One month after the occlusion, the animals were behaviorally tested. Irradiation alone reduced neurogenesis but did not change vascular or dendritic morphology at the time of behavioral testing. Neither did irradiation, ischemia, or combined treatment impair rotor-rod performance or alter open-field activity. Gerbils subjected to both irradiation and ischemia demonstrated impaired performance in the water-maze task, compared with those that received only ischemia, radiation, or no treatment. These impairments after cerebral global ischemia under conditions of reduced neurogenesis support a role for the production of new cells in mediating functional recovery. [source] |