Beech Trees (beech + tree)

Distribution by Scientific Domains


Selected Abstracts


Spatiotemporal changes of beetle communities across a tree diversity gradient

DIVERSITY AND DISTRIBUTIONS, Issue 4 2009
Stephanie Sobek
Abstract Aim, Plant and arthropod diversity are often related, but data on the role of mature tree diversity on canopy insect communities are fragmentary. We compare species richness of canopy beetles across a tree diversity gradient ranging from mono-dominant beech to mixed stands within a deciduous forest, and analyse community composition changes across space and time. Location, Germany's largest exclusively deciduous forest, the Hainich National Park (Thuringia). Methods, We used flight interception traps to assess the beetle fauna of various tree species, and applied additive partitioning to examine spatiotemporal patterns of diversity. Results, Species richness of beetle communities increased across the tree diversity gradient from 99 to 181 species per forest stand. Intra- and interspecific spatial turnover among trees contributed more than temporal turnover among months to the total ,-beetle diversity of the sampled stands. However, due to parallel increases in the number of habitat generalists and the number of species in each feeding guild (herbivores, predators and fungivores), no proportional changes in community composition could be observed. If only beech trees were analysed across the gradient, patterns were similar but temporal (monthly) species turnover was higher compared to spatial turnover among trees and not related to tree diversity. Main conclusions, The changes in species richness and community composition across the gradient can be explained by habitat heterogeneity, which increased with the mix of tree species. We conclude that understanding temporal and spatial species turnover is the key to understanding biodiversity patterns. Mono-dominant beech stands are insufficient to conserve fully the regional species richness of the remaining semi-natural deciduous forest habitats in Central Europe, and analysing beech alone would have resulted in the misleading conclusion that temporal (monthly) turnover contributes more to beetle diversity than spatial turnover among different tree species or tree individuals. [source]


Biological control of beech and hornbeam affects species richness via changes in the organic layer, pH and soil moisture characteristics

FUNCTIONAL ECOLOGY, Issue 2 2010
Anne Mieke Kooijman
Summary 1. ,Litter quality is an important ecosystem factor, which may affect undergrowth species richness via decomposition and organic layers directly, but also via longer-term changes in soil pH and moisture. The impact of beech trees with low-degradable and hornbeam trees with high-degradable litter on biodiversity and soil characteristics was studied in ancient forests on decalcified marl, a parent material sensitive to changes in pH and clay content, and characteristic of large parts of western Europe. 2. ,Vegetation analysis clearly separated beech and hornbeam plots, and showed that species richness was consistently lower under beech. Low species richness under beech was associated with low pH, high mass of the organic layer and low soil moisture, which were all interrelated. 3. ,Development of the organic layer was affected by, not only litter quality, but also by pH levels and soil moisture. Under hornbeam, older organic matter increased from almost zero to 1 kg m,2 in drier and more acid soil. Under beech tree litter decay was generally slow, but slowed further in acid soils, where older organic matter amounted to 4 kg m,2. 4. ,Soil moisture and pH levels were strongly related, possibly due to long-term soil development. Under hornbeam, which is more palatable to soil organisms, moisture, bulk density, clay content and pH were high. Acidification and clay eluviation may be counteracted by earthworms, which bring base cations and clay particles back to the surface, and stimulate erosion, so that the impermeable, clay-rich subsoil remains close to the surface. Soils remain base-rich and moist, which further stimulates litter decay and species richness. 5. ,The unpalatable beech showed low pH and clay content, and high porosity, air-filled pore space and depth to the impermeable subsoil. Acidification and clay eluviation may proceed uninhibited, because earthworm activity is low, and erosion limited by protective litter covers. This may lead to drier and more acid soils, which reduce litter decay and species richness even further. 6. ,Trees with low and high litter quality may thus act as an ecosystem engineer, and not only affect ecosystem functioning via mass of the organic layer, but also via longer-term changes in soil characteristics, which in turn affect species richness of the understorey. [source]


A global change-induced biome shift in the Montseny mountains (NE Spain)

GLOBAL CHANGE BIOLOGY, Issue 2 2003
Josep Peñuelas
Abstract Shifts in plant species and biome distribution in response to warming have been described in past climate changes. However, reported evidence of such shifts under current climate change is still scarce. By comparing current and 1945 vegetation distribution in the Montseny mountains (Catalonia, NE Spain), we report here a progressive replacement of cold-temperate ecosystems by Mediterranean ecosystems. Beech (Fagus sylvatica) forest has shifted altitudinally upwards by ca. 70 m at the highest altitudes (1600,1700 m). Both the beech forests and the heather (Calluna vulgaris) heathlands are being replaced by holm oak (Quercus ilex) forest at medium altitudes (800,1400 m). This beech replacement has been observed to occur through a progressive isolation and degradation of beech stands. In ,isolated' (small and surrounded by holm oaks) beech stands, beech trees are 30% more defoliated, beech recruitment is 41% lower, and holm oak recruitment is three times higher than in ,continental' (large and continuous) beech stands. The progressively warmer conditions, complemented by the land use changes (mainly the cessation of traditional land management) are the apparent causes, providing a paradigmatic example of global change affecting distributions of plant species and biomes. [source]


Predation of beech seed by mice: effects of numerical and functional responses

JOURNAL OF ANIMAL ECOLOGY, Issue 6 2005
WENDY A. RUSCOE
Summary 1The functional response of post-dispersal seed predators (house mouse, Mus musculus) to absolute densities of southern beech seed (Nothofagus solandri var. cliffortioides) was studied in laboratory and field trials. House mice showed a Type II (hyperbolic) functional response to seed availability and this was not modified by the presence of an alternative food source. 2Maximum daily intake rate of beech seeds during field trials averaged 1042 seeds mouse,1. This is sufficient to provide house mice with both the energy and protein required for growth and reproduction. 3We explicitly incorporated the functional response into the numerical response of house mice to beech seed, measured for field populations monitored in a New Zealand beech forest. House mice showed a strong numerical response to beech seed intake rate that was modified by some density-dependent mechanism(s). 4We developed a model that simulated seedfall, house mouse population growth and seed reserve depletion over one year. We found that the previously reported decline in house-mouse populations in beech forests during spring and summer is likely to be related to spring beech seed germination that renders seed no longer available as a food source for house mice. 5From our simulation model it does not appear that house-mouse populations can completely eat-out beech seed reserves prior to germination in a year of large seedfall. ,Masting' behaviour in New Zealand native beech trees is therefore sufficient to satiate an eruptive population of an exotic mammalian omnivore, despite the lack of a long co-evolutionary interaction. [source]


Response of beech (Fagus sylvatica) to elevated CO2 and N: Influence on larval performance of the gypsy moth Lymantria dispar (Lep., Lymantriidae)

JOURNAL OF APPLIED ENTOMOLOGY, Issue 9-10 2001
M. W. Henn
Two-year-old beech seedlings were kept from germination to bioassays with Lymantriadispar under the following conditions: ambient CO2/low N, elevated CO2/low N, ambient CO2/elevated N, and elevated CO2/elevated N. The effect of these growing conditions of the trees on the performance of the defoliator L. dispar was studied 2 years after initiating the tree cultivation. The developmental success of third-instar larvae of L. dispar was characterized by the weight gained, percentage of weight gain, relative growth rate (RGR), relative consumption rate (RCR), and efficiency of conversion of ingested food into body substance (ECI). Contrary to our expectations, additional N-fertilization did not increase and elevated CO2 did not delay larval growth rate. However, the environmental treatments of the beech seedlings were found to affect the larval performance. Larvae consumed significantly higher amounts of foliage (RCR) on beech trees under controlled conditions (ambient CO2 and low N) compared to those under elevated CO2 and enhanced N. The opposite was true for ECI. The lowest efficacy to convert consumed food to body substance was observed under control conditions and the highest when the larvae were kept on beech trees grown under elevated CO2 and additional N-fertilization. These opposite effects resulted in the weight gain-based parameters (absolute growth, percentage of growth, and RGR) of the gypsy moth larvae remaining unaffected. The results indicate that the gypsy moth larvae are able to change their ECI and RCR to obtain a specific growth rate. This is discussed as an adaptation to specific food qualities. [source]


Effects of size, competition and altitude on tree growth

JOURNAL OF ECOLOGY, Issue 5 2007
DAVID A. COOMES
Summary 1,Understanding the factors influencing tree growth is central to forest ecology because of the significance of growth to forest structure and biomass. One of the simplest, yet most controversial growth models, proposed by Enquist and colleagues, predicts that stem-diameter growth scales as the one-third power of stem diameter. Recent analyses of large-scale data sets have challenged the generality of this theory and highlighted the influence of resource competition on the scaling of growth with size. 2Here we explore the factors regulating the diameter growth of 3334 trees of mountain beech (Nothofagus solandri var. cliffortioides) growing in natural single-species forests in New Zealand. Maximum-likelihood modelling was used to quantify the influences of tree size, altitude, the basal area of taller neighbours (BL) and the basal area of all neighbours (BT) on growth. Our interpretation of the models assumed that taller neighbours compete for light whereas all neighbours compete for nutrients. 3The regression analyses indicate that competition for light has a strong influence on the growth of small trees, whereas competition for nutrients affects trees of all sizes. These findings are consistent with experimental manipulation studies showing that competition for light and nutrients inhibits the growth of small mountain beech trees, and fertilizer application studies showing that nitrogen limits the growth of large trees. 4Tree growth declined with altitude. The regression analyses suggest that the intensity of light competition also declines with altitude, when trees with similar BT and BL values were compared along the gradient. These results are consistent with observations that trees become stunted and have more open canopies at high altitudes. 5Our study is the first to build the effects of competition and environment into Enquist's model of tree growth. We show that competitive interactions alter the scaling of mean growth rate with size, whereas altitude does not influence the scaling of potential growth rate with size. [source]


Diversity of canopy and understorey spiders in north-temperate hardwood forests

AGRICULTURAL AND FOREST ENTOMOLOGY, Issue 2 2009
Maxim Larrivée
Abstract 1,We characterized and compared diversity patterns of canopy and understorey spiders (Arachnida: Araneae) on sugar maple (Acer saccharum Marsh.) and American beech (Fagus grandifolia Ehrh.) in hardwood forests of southern Québec, Canada. 2,We sampled canopies of 45 sugar maple and 45 American beech trees and associated understorey saplings in mature protected forests near Montréal. Samples were obtained by beating the crown foliage at various heights and by beating saplings around each tree. 3,Eighty-two species were identified from 13 669 individuals. Forty-eight species and 3860 individuals and 72 species and 9809 individuals were collected from the canopy and the understorey, respectively. 4,Multivariate analyses (NMDS ordination and NPMANOVA) showed the composition of canopy and understorey assemblages differed significantly, and canopy assemblages differed between tree species. Rank-abundance distribution models fitted to the canopy and understorey data indicated that different mechanisms structure the assemblages in both habitats. Three abundant spider species were significantly more common in the canopy; ten species were collected significantly more often in the understorey. 5,The forest canopy was shown to be an important reservoir for spider diversity in north-temperate forests. [source]


Spatial variability of O layer thickness and humus forms under different pine beech,forest transformation stages in NE Germany

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 1 2006
Oliver Bens
Abstract Spatial variability of humus layer (O layer) thicknesses can have important impacts upon soil water dynamics, nutrient storage and availability, as well as plant growth. The purpose of the present study was to elucidate the impact of forest-transformation practices on the spatial variability of O layer thicknesses. The study focused on the Kahlenberg forest area (NE Germany) with stands of Scots pine (Pinus sylvestris) and European beech (Fagus sylvatica) of different age structures that form a transformation chronosequence from pure Scots pine stands towards pure European beech stands. Topsoil profiles including both, the O layer and the uppermost humic mineral soil horizon were excavated at intervals of 0.4 m along 15,20 m long transects, and spatial variability of O layer thicknesses was quantified by variogram analysis. The correlation lengths of total O layer thickness increased in the sequence consisting of pure pine stand (3.1 m) , older mixed stand (3.7 m) , pure beech stand (4.5 m), with the exception of the younger mixed stand, for which no correlation lengths of total O layer thickness could be determined. The degree of spatial correlation, i.e., the percentage of the total variance which can be described by variograms, was highest for the two monospecies stands, whereas this percentage was distinctly lower for the two mixed stands. A similar minimum for the two mixed stands was observed for the correlation lengths of the Oh horizon. These results suggest that the spatial structures of forest-transformation stands may be interpreted in terms of a disturbance (in the form of the underplanting of beech trees). After this disturbance, the forest ecosystem requires at least 100 y to again reach relative equilibrium. These findings are in line with the results of other soil-related investigations at these sites. Räumliche Variabilität der Humuslagenmächtigkeit und Humusformen in verschiedenen Stadien des Waldumbaus von Kiefer zu Buche in NO-Deutschland Die räumliche Variabilität der Humusauflagenmächtigkeit kann einen bedeutenden Einfluss auf die Bodenwasserdynamik, Nährstoffspeicherung und -verfügbarkeit sowie das Pflanzenwachstum haben. Ziel dieser Studie war es, die Auswirkungen von Waldumbaumaßnahmen auf die räumliche Verteilung der Auflagehumusmächtigkeiten zu untersuchen. Im Forstrevier Kahlenberg, mit Beständen von Kiefer (Pinus sylvestris) und Buche (Fagus sylvatica) unterschiedlichen Alters, welche eine Transformations-Chronosequenz von einem Kiefern-Reinbestand hin zu einem reinen Buchenbestand darstellen, wurden Humusprofile entlang von 15,20 m langen Transekten in Abständen von 0,4 m aufgenommen. Die räumliche Variabilität der Mächtigkeiten der Auflagehumushorizonte wurde durch Variogramm-Analysen quantifiziert. Die Korrelationslängen der Mächtigkeiten des gesamten Auflagehumus stiegen in der Reihenfolge reiner Kiefernbestand (3,1 m) , älterer Mischbestand (3,7 m) , reiner Buchenbestand (4,5 m) an. Aus dieser Reihe fällt der jüngere Mischbestand heraus; für ihn konnten keine Korrelationslängen ermittelt werden. Der Grad der räumlichen Korrelation, d. h. der Anteil der gesamten Varianz, der durch Variogramme beschrieben wird, ist für die beiden Reinbestände am höchsten, während er für die beiden Mischbestände deutlich geringer ist. Ein ähnliches Minimum für die beiden Mischbestände ergibt sich, wenn nur die Korrelationslängen der Oh-Mächtigkeiten betrachtet werden. Diese Ergebnisse deuten darauf hin, dass die räumlichen Strukturen von Waldumbaubeständen im Sinne einer Störung gedeutet werden können (wobei die Umbaumaßnahme und der Unterbau mit Buchen die Störung darstellt). Diese Störung dauert offenbar mindestens 100 a an. Dieser Befund stimmt mit den Ergebnissen aus Studien zu weiteren relevanten Bodeneigenschaften an Forststandorten im nordostdeutschen Tiefland überein. [source]


Soil nutrient supply and biomass production in a mixed forest on a skeleton-rich soil and an adjacent beech forest

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 6 2002
Dirk Hölscher
Abstract In the natural forest communities of Central Europe, beech (Fagus sylvatica L.) predominates in the tree layer over a wide range of soil conditions. An exception with respect to the dominance of beech are skeleton-rich soils such as screes where up to 10 broad-leaved trees co-exist. In such a Tilia-Fagus-Fraxinus-Acer-Ulmus forest and an adjacent mono-specific beech forest we compared (1) soil nutrient pools and net nitrogen mineralization rates, (2) leaf nutrient levels, and (3) leaf litter production and stem increment rates in order to evaluate the relationship between soil conditions and tree species composition. In the mixed forest only a small quantity of fine earth was present (35 g l,1) which was distributed in patches between basalt stones; whereas a significantly higher (P < 0.05) soil quantity (182 g l,1) was found in the beech forest. In the soil patches of the mixed forest C and N concentrations and also concentrations of exchangeable nutrients (K, Ca, Mg) were significantly higher than in the beech forest. Net N mineralization rates on soil dry weight basis in the mixed forest exceeded those in the beech forest by a factor of 2.6. Due to differences in fine earth and stone contents, the volume related soil K pool and the N mineralization rate were lower in the mixed forest (52 kg N ha,1 yr,1, 0,10 cm depth) than in the beech forest (105 kg N ha,1 yr,1). The leaf N and K concentrations of the beech trees did not differ significantly between the stands, which suggests that plant nutrition was not impaired. In the mixed forest leaf litter fall (11,%) and the increment rate of stem basal area (52,%) were lower than in the beech forest. Thus, compared with the adjacent beech forest, the mixed forest stand was characterized by a low volume of patchy distributed nutrient-rich soil, a lower volume related K pool and N mineralization rate, and low rates of stem increment. Together with other factors such as water availability these patterns may contribute to an explanation of the diverse tree species composition on Central European screes. Bodennährstoffangebot und Biomasseproduktion in einem Mischwald auf einem stark skeletthaltigen Standort und in einem benachbarten Buchenwald In den natürlichen Waldgesellschaften Mitteleuropas dominiert die Buche (Fagus sylvatica L.) über ein weites Spektrum an bodenchemischen Standortsbedingungen. Eine Ausnahme in Bezug auf die Buchendominaz bilden stark skeletthaltige Standorte, wie etwa Blockhalden, wo bis zu 10 Laubbaumarten gemeinsam vorkommen. In solch einem Tilia-Fagus-Fraxinus-Acer-Ulmus -Wald und einem benachbarten Buchenreinbestand haben wir (1) die Bodennährstoffvorräte und Stickstoffmineralisationsraten, (2) den Blattnährstoffstatus und (3) die Blattproduktion und die Stammzuwachsraten vergleichend untersucht, um die Beziehung zwischen den Bodenbedingungen und der Baumartenzusammensetzung zu charakterisieren. In dem Mischwald fanden wir nur eine geringe Menge an Feinboden (35 g l,1), die sich in Taschen zwischen den Basaltsteinen befand, wohingegen ein signifikant (P < 0.05) höherer Gehalt an Feinboden (182 g l,1) in dem Buchenwald vorhanden war. In den Bodentaschen des Mischwaldes waren die C- und N-Konzentrationen und auch die Konzentrationen an austauschbar gebundenem K, Ca und Mg signifikant höher als im Buchenwald. Die Netto-N-Mineralisation pro Gewichtseinheit im Mischwald überstieg diejenige im Buchenwald um den Faktor 2,6. Wegen der unterschiedlichen Anteile an Feinboden und Skelett waren der volumenbezogene K-Vorrat und die volumenbezogene N-Mineralisationsrate im Mischwald (52 kg N ha,1 yr,1, 0,10 cm Tiefe) geringer als im Buchenwald (105 kg N ha,1 yr,1). Die Blattnährstoffgehalte von Buchen unterschieden sich zwischen den beiden Beständen nicht signifikant, was darauf hinweist, dass die Pflanzenernährung nicht beeinträchtigt war. Der herbstliche Blattstreufall (11,%) und die Zuwachsraten der Stammquerflächen (52,%) waren im Mischwald geringer als im Buchenwald. Im Vergleich mit dem benachbarten Buchenwald wies der Mischwald somit einen geringen Gehalt an sehr ungleichmäßig verteiltem, nährstoffreichen Boden, geringere volumenbezogene K-Vorräte und N-Mineralisationsraten und geringe Stammzuwächse auf. Gemeinsam mit anderen Faktoren, wie etwa der Wasserverfügbarkeit, können diese Muster zu einer Erklärung der Baumartenvielfalt auf mitteleuropäischen Blockstandorten beitragen. [source]


NH3 and NO2 fluxes between beech trees and the atmosphere , correlation with climatic and physiological parameters

NEW PHYTOLOGIST, Issue 3 2000
ARTHUR GESSLER
The dynamic-chamber technique was used to investigate the correlation between NH3 and NO2 fluxes and different climatic and physiological parameters: air temperature; relative air humidity; photosynthetic photon fluence rate; NH3 and NO2 concentrations; transpiration rate; leaf conductance for water vapour; and photosynthetic activity. The experiments were performed with twigs from the sun crown of mature beech trees (Fagus sylvatica) at a field site (Höglwald, Germany), and with 12-wk-old beech seedlings under controlled conditions. Both sets of experiments showed that NO2 and NH3 fluxes depended linearly on NO2 and NH3 concentration, respectively, in the concentration ranges representative for the field site studied, and on water-vapour conductance as a measure for stomatal aperture. The NO2 compensation point determined in the field studies (the atmospheric NO2 concentration with no net NO2 flux) was 1.8,1.9 nmol mol,1. The NH3 compensation point varied between 3.3 and 3.5 nmol mol,1 in the field experiments, and was 3.0 nmol mol,1 in the experiments under controlled conditions. The climatic factors T and PPFR were found to influence both NO2 and NH3 fluxes indirectly, by changing stomatal conductance. Whilst NO2 flux showed a response to changing relative humidity that could be explained by altered stomatal conductance, increased NH3 flux with increasing relative humidity (>50%) depended on other factors. The exchange of NO2 between above-ground parts of beech trees and the atmosphere could be explained exclusively by uptake or emission of NO2 through the stomata, as indicated by the quotient between measured and predicted NO2 conductance of approx. 1 under all environmental conditions examined. Neither internal mesophyll resistances nor additional sinks could be observed for adult trees or for beech seedlings. By contrast, the patterns of NH3 flux could not be explained by an exclusive exchange of NH3 through the stomata. Deposition into additional sinks on the leaf surface, as indicated by an increase in the quotient between measured and predicted NH3 conductance, gained importance in high air humidity, when the stomata were closed or nearly closed and/or when atmospheric NH3 concentrations were high. Although patterns of NH3 gas exchange did not differ between different months or years at high NH3 concentrations (c. 140 nmol mol,1), it must be assumed that emission or deposition fluxes at low ambient NH3 concentration (0.8 and 4.5 nmol mol,1) might vary significantly with time because of variation in the NH3 compensation point. [source]


Tree age is a key factor for the conservation of epiphytic lichens and bryophytes in beech forests

APPLIED VEGETATION SCIENCE, Issue 1 2009
Örjan Fritz
Abstract Questions: What factors limit the distribution of epiphytic lichens and bryophytes at plot and tree level in beech forests? At what ages do epiphytic species, and species of conservation concern in particular, occur along a chronosequence of beech? Location: South-west Sweden. Method: Five hundred and seventy-one age-determined trees from 37 plots distributed among 29 beech-dominated stands were surveyed along with a number of environmental (16) and substrate (seven) variables in a landscape of ca. 550 ha. Non-metric multidimensional scaling (NMS) and indicator species analysis (ISA) were used for data analysis. Results: Plots containing old trees, confined to the base of slopes and with low impacts of recent forestry (thinning), generally had a high richness of species of conservation concern. Richness of common species and red-listed bryophytes were mostly related to the surveyed bark area. At tree level, primary factors explaining both species richness and composition were age, diameter at breast height and moss cover. There was a gradual replacement of tree age ranges for 58 lichens and 37 bryophytes along the chronosequence of beech. Red-listed lichens favoured damaged beech trees (,180 years), whereas red-listed bryophytes were found on old and young stems in dense stands. Conclusions: Tree age exerts a profound influence on epiphytic lichens and bryophytes growing on beech. Many of the habitat specialists were found mainly on old beech because they inhabit specific substrates that occur on older trees. The association to high tree age commonly excludes red-listed lichens from conventionally managed beech forests with a 100- to 140-year rotation period. [source]