Ae/Be Stars (be + star)

Distribution by Scientific Domains

Kinds of Ae/Be Stars

  • herbig be star


  • Selected Abstracts


    The exceptional Herbig Ae star HD 101412: The first detection of resolved magnetically split lines and the presence of chemical spots in a Herbig star,

    ASTRONOMISCHE NACHRICHTEN, Issue 4 2010
    S. Hubrig
    Abstract In our previous search for magnetic fields in Herbig Ae stars, we pointed out that HD 101412 possesses the strongest magnetic field among the Herbig Ae stars and hence is of special interest for follow-up studies of magnetism among young pre-main-sequence stars. We obtained high-resolution, high signal-to-noise UVES and a few lower quality HARPS spectra revealing the presence of resolved magnetically split lines. HD 101412 is the first Herbig Ae star for which the rotational Doppler effect was found to be small in comparison to the magnetic splitting and several spectral lines observed in unpolarized light at high dispersion are resolved into magnetically split components. The measured mean magnetic field modulus varies from 2.5 to 3.5kG, while the mean quadratic field was found to vary in the range of 3.5 to 4.8 kG. To determine the period of variations, we used radial velocity, equivalent width, line width, and line asymmetry measurements of variable spectral lines of several elements, as well as magnetic field measurements. The period determination was done using the Lomb-Scargle method. The most pronounced variability was detected for spectral lines of He I and the iron peak elements, whereas the spectral lines of CNO elements are only slightly variable. From spectral variations and magnetic field measurements we derived a potential rotation period Prot = 13.86 d, which has to be proven in future studies with a larger number of observations. It is the first time that the presence of element spots is detected on the surface of a Herbig Ae/Be star. Our previous study of Herbig Ae stars revealed a trend towards stronger magnetic fields for younger Herbig Ae stars, confirmed by statistical tests. This is in contrast to a few other (non-statistical) studies claiming that magnetic Herbig Ae stars are progenitors of the magnetic Ap stars. New developments in MHD theory show that the measured magnetic field strengths are compatible with a current-driven instability of toroidal fields generated by differential rotation in the stellar interior. This explanation for magnetic intermediate-mass stars could be an alternative to a frozen-in fossil field (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Probing the circumstellar structure of Herbig Ae/Be stars

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2002
    Jorick S. Vink
    Abstract We present H, spectropolarimetry observations of a sample of 23 Herbig Ae/Be stars. A change in the linear polarization across H, is detected in a large fraction of the objects, which indicates that the regions around Herbig stars are flattened (disc-like) on small scales. A second outcome of our study is that the spectropolarimetric signatures for the Ae stars differ from those of the Herbig Be stars, with characteristics changing from depolarization across H, in the Herbig Be stars, to line polarizations in the Ae group. The frequency of depolarizations detected in the Herbig Be stars (seven out of 12) is particularly interesting as, by analogy with classical Be stars, it may be the best evidence to date that the higher-mass Herbig stars are surrounded by flattened structures. For the Herbig Ae stars, nine out of 11 show a line polarization effect that can be understood in terms of a compact H, emission that is itself polarized by a rotating disc-like circumstellar medium. The spectropolarimetric difference between the Herbig Be and Ae stars may be the first indication that there is a transition in the Hertzsprung,Russell diagram from magnetic accretion at spectral type A to disc accretion at spectral type B. Alternatively, the interior polarized line emission apparent in the Ae stars may be masked in the Herbig Be stars owing to their higher levels of H, emission. [source]