Home About us Contact | |||
Trade Winds (trade + wind)
Selected AbstractsEvaluation of the North Atlantic SST forcing on the European and Northern African winter climateINTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 2 2006Belén Rodríguez-Fonseca Abstract The 1960,1996 patterns of monthly anomalous winter precipitation in Europe and North Africa (ENA) and their connection with the North Atlantic SST are studied. A lag Singular Value Decomposition analysis has been applied to monthly SST and precipitation data to define the most influential Atlantic oceanic areas on the winter ENA rainfall. The results indicate a link between the subtropical North Atlantic SST and the winter precipitation anomalies in areas of the northern,southwestern Europe and northern Africa, since the preceding summer months. We also show that the SLP pattern connected with this subtropical oceanic area is not the NAO itself, and we explain this subtropical,extratropical connection through changes in the trade winds. The estimates of ENA winter precipitation anomalies, based on the previous summer SST, have been validated using a bootstrap analysis. Finally, we verify the reliability of this connection for the whole period from 1900 to 1996. Copyright © 2006 Royal Meteorological Society. [source] Climate dynamics of atmosphere and ocean in the equatorial zone: a synthesisINTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 13 2004Stefan Hastenrath Abstract A synopsis is offered of circulation mechanisms in the oceanic regions of the equatorial zone. Over the eastern Atlantic and Pacific, and especially in boreal summer, cross-equatorial flow from the Southern Hemisphere is strong and induces a tongue of cold surface waters, centred to the south of the equator. Upon crossing the equator in these sectors, owing to the Coriolis effect and a kinetic energy imbalance, the airstream speeds up and divergence develops, producing the Intertropical Divergence Zone (ITDZ). Once these processes result in the wind recurving from southeasterly to southwesterly, the flow slows down and becomes convergent, manifest in the Intertropical Convergence Zone, with a maximum to the south of the wind confluence. By contrast, over the western Atlantic and central Pacific and especially in boreal winter, winds in the equatorial band are predominantly from the east, upper-ocean Ekman transport is directed away from the equator, and the upwelling and cold tongue are centred on the equator. Cross-equatorial flow is insufficient to produce recurvature, the ITDZ is narrower and weaker, the divergence maximum is at the equator rather than in low northern latitudes, and the convergence maximum straddles the wind confluence. Over the Indian Ocean, the wind field is dominated by the alternation between the predominantly meridional flow of the winter and summer monsoons. Equatorial westerlies are limited to the short monsoon transition seasons. Essential for their origin is an eastward pressure gradient along the equator and weak southern trade winds, allowing recurvature somewhat south of the equator. Because the zonal pressure gradient is strongest in boreal summer and the southern trade winds are weakest in austral summer, the equatorial westerlies peak in spring and autumn. The boreal autumn equatorial westerlies are the surface manifestation of a powerful zonal,vertical circulation cell along the Indian Ocean equator. Equatorial zonal,vertical circulation cells require well-developed zonal flow in the lower troposphere along the equator and, therefore, appear confined to the oceanic longitudes and certain seasons. Thus, they are found over the Atlantic only in boreal winter and over the Indian Ocean only in boreal autumn, whereas over the Pacific they prevail all year round. Copyright © 2004 Royal Meteorological Society [source] Interannual variability of lower-tropospheric moisture transport during the Australian monsoonINTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 5 2002Christopher R. Godfred-Spenning Abstract The interannual variability of the horizontal lower-tropospheric moisture transport associated with the Australian summer monsoon has been analysed for the 1958,99 period. The 41-season climatology of moisture flux integrated between the surface and 450 hPa showed moderate levels of westerly transport in the month before Australian monsoon onset, associated with cross-equatorial flow in the Sulawesi Sea and west of Borneo. In the month after onset the westerly moisture transport strengthened dramatically in a zonal belt stretching from the Timor Sea to the Western Equatorial Pacific, constrained between the latitudes 5 and 15 °S, and associated with a poleward shift in the Intertropical Convergence Zone and deepening of the monsoon trough. Vertical cross-sections showed this transport extending from the surface to the 500 hPa level. In the second and third months after onset the horizontal flow pattern remained similar, although flux magnitudes progressively decreased, and the influence of trade winds became more pronounced over northern Australia. Nine El Niño and six La Niña seasons were identified from the data set, and composite plots of the affected years revealed distinct, and in some cases surprising, alterations to the large-scale moisture transport in the tropical Australian,Indonesian region. During an El Niño it was shown that the month prior to onset, in which the moisture flux was weaker than average, yielded to a dramatically stronger than average flux during the following month, with a zone of westerly flux anomalies stretching across the north Australian coast and Arafura Sea. The period of enhanced moisture flux during an El Niño is relatively short-lived, with drier easterly anomalies asserting themselves during the following 2 months, suggesting a shorter than usual monsoon period in north Australia. In the La Niña composite, the initial month after onset shows a tendency to weaker horizontal moisture transport over the Northern Territory and Western Australia. The subsequent 2 months show positive anomalies in flux magnitude over these areas; the overall effect is to prolong the monsoon. Comparison of these results with past research has led us to suggest that the tendency for stronger (weaker) circulations to arise in the initial month of El Niño (La Niña) events is a result of mesoscale changes in soil moisture anomalies on land and offshore sea surface temperature (SST) anomalies, brought about by the large-scale alterations to SST and circulation patterns during the El Niño,Southern Oscillation. The soil moisture and SST anomalies initially act to enhance (suppress) the conditions necessary for deep convection in the El Niño (La Niña) cases via changes in land,sea thermal contrast and cloud cover. Copyright © 2002 Royal Meteorological Society. [source] Dry spots and wet spots in the Andean hotspotJOURNAL OF BIOGEOGRAPHY, Issue 8 2007Timothy J. Killeen Abstract Aim, To explain the relationship between topography, prevailing winds and precipitation in order to identify regions with contrasting precipitation regimes and then compare floristic similarity among regions in the context of climate change. Location, Eastern slope of the tropical Andes, South America. Methods, We used information sources in the public domain to identify the relationship between geology, topography, prevailing wind patterns and precipitation. Areas with contrasting precipitation regimes were identified and compared for their floristic similarity. Results, We identify spatially separate super-humid, humid and relatively dry regions on the eastern slope of the Andes and show how they are formed by the interaction of prevailing winds, diurnally varying atmospheric circulations and the local topography of the Andes. One key aspect related to the formation of these climatically distinct regions is the South American low-level jet (SALLJ), a relatively steady wind gyre that flows pole-ward along the eastern slopes of the Andes and is part of the gyre associated with the Atlantic trade winds that cross the Amazon Basin. The strongest winds of the SALLJ occur near the ,elbow of the Andes' at 18° S. Super-humid regions with mean annual precipitation greater than 3500 mm, are associated with a ,favourable' combination of topography, wind-flow orientation and local air circulation that favours ascent at certain hours of the day. Much drier regions, with mean annual precipitation less than 1500 mm, are associated with ,unfavourable' topographic orientation with respect to the mean winds and areas of reduced cloudiness produced by local breezes that moderate the cloudiness. We show the distribution of satellite-estimated frequency of cloudiness and offer hypotheses to explain the occurrence of these patterns and to explain regions of anomalously low precipitation in Bolivia and northern Peru. Floristic analysis shows that overall similarity among all circumscribed regions of this study is low; however, similarity among super-humid and humid regions is greater when compared with similarity among dry regions. Spatially separate areas with humid and super-humid precipitation regimes show similarity gradients that are correlated with latitude (proximity) and precipitation. Main conclusions, The distribution of precipitation on the eastern slope of the Andes is not simply correlated with latitude, as is often assumed, but is the result of the interplay between wind and topography. Understanding the phenomena responsible for producing the observed precipitation patterns is important for mapping and modelling biodiversity, as well as for interpreting both past and future climate scenarios and the impact of climate change on biodiversity. Super-humid and dry regions have topographic characteristics that contribute to local climatic stability and may represent ancestral refugia for biodiversity; these regions are a conservation priority due to their unique climatic characteristics and the biodiversity associated with those characteristics. [source] Vegetation dynamics of predator-free land-bridge islandsJOURNAL OF ECOLOGY, Issue 2 2006JOHN TERBORGH Summary 1We tested the ,green world' hypothesis of Hairston, Smith and Slobodkin by monitoring vegetation change on recently created predator-free land-bridge islands in a huge hydroelectric impoundment, Lago Guri, in the State of Bolivar, Venezuela. 2Our results affirm the green world hypothesis and expose the operation of a strong top-down trophic cascade that negatively impacted nearly every plant species present, implying that community stability is maintained through the action of predators. 3To test the hypothesis, we monitored vegetation on nine predator-free islands and compared demographic parameters to those observed at control sites supporting complete or nearly complete suites of predators. 4Herbivore abundance was high on ,small' (, 0.5, < 2 ha) islands, moderate on ,medium' islands (> 3, < 15 ha) and low on the ,large' landmasses that served for reference. 5Small sapling densities on small islands were only 37% of controls in 1997 (after 11 years of isolation), and when recensused in 2002, had fallen to 25% of controls. High mortality and, especially, low recruitment contributed to the decline in sapling cohorts. 6Sapling decline occurred earlier on small islands, although recruitment failure had become equally pronounced on medium islands by the end of the monitoring period. 7Several mechanisms could potentially account for suppressed sapling recruitment, but the weight of evidence points to herbivory on seedlings and small saplings by leaf-cutter ants (Atta spp. and Acromyrmex sp.). Exposure to prevailing trade winds (windward vs. leeward slopes of islands) had no detectable effect on the density or diversity of seedlings or saplings. [source] Adverse meteorological phenomena associated with low-level baric troughs in the Alagoas State, Brazil, in 2003ATMOSPHERIC SCIENCE LETTERS, Issue 3 2010Luis Ricardo Lage Rodrigues Abstract Baric troughs were studied over the Alagoas State, Brazil, in 2003. The relationship between these synoptic systems, weekly sea surface temperature anomaly and adverse meteorological phenomena in the Alagoas State, was analyzed. The maximum trough frequency occurred at low levels during the wetter and colder season in the investigated region (June and July). Most of the troughs were observed at 1200 UTC. It was also noted that 87% of the troughs was associated with wavy disturbance in the trade winds on the northwestern periphery of the subtropical South Atlantic High. These troughs were associated with meteorological phenomena in a stable and an unstable atmosphere. Copyright © 2010 Royal Meteorological Society [source] |