TRAIL

Distribution by Scientific Domains
Distribution within Medical Sciences

Terms modified by TRAIL

  • trail making test

  • Selected Abstracts


    Liposome-bound APO2L/TRAIL is an effective treatment in a rabbit model of rheumatoid arthritis

    ARTHRITIS & RHEUMATISM, Issue 8 2010
    Luis Martinez-Lostao
    Objective We previously observed that T lymphocytes present in synovial fluid (SF) from patients with rheumatoid arthritis (RA) were sensitive to APO2L/TRAIL. In addition, there was a drastic decrease in the amount of bioactive APO2L/TRAIL associated with exosomes in SF from RA patients. This study was undertaken to evaluate the effectiveness of bioactive APO2L/TRAIL conjugated with artificial lipid vesicles resembling natural exosomes as a treatment in a rabbit model of antigen-induced arthritis (AIA). Methods We used a novel Ni2+ -(N -5-amino-1-carboxypentyl)-iminodiacetic acid),containing liposomal system. APO2L/TRAIL bound to liposomes was intraarticularly injected into the knees of animals with AIA. One week after treatment, rabbits were killed, and arthritic synovial tissue was analyzed. Results Tethering APO2L/TRAIL to the liposome membrane increased its bioactivity and resulted in more effective treatment of AIA compared with soluble, unconjugated APO2L/TRAIL, with substantially reduced synovial hyperplasia and inflammation in rabbit knee joints. The results of biophysical studies suggested that the increased bioactivity of APO2L/TRAIL associated with liposomes was due to the increase in the local concentration of the recombinant protein, augmenting its receptor crosslinking potential, and not to conformational changes in the protein. In spite of this increase in bioactivity, the treatment lacked systemic toxicity and was not hepatotoxic. Conclusion Our findings indicate that binding APO2L/TRAIL to the liposome membrane increases its bioactivity and results in effective treatment of AIA. [source]


    CD95-mediated Apoptosis of Human Glioma Cells: Modulation by Epidermal Growth Factor Receptor Activity

    BRAIN PATHOLOGY, Issue 1 2002
    Joachim P. Steinbach
    The death ligands CD95L and Apo2L/TRAIL are promising investigational agents for the treatment of malignant glioma. EGFR is overexpressed in a significant proportion of malignant gliomas in vivo. Here, we report that CD95L-induced cell death is enhanced by EGFR inhibition using tyrphostine AG1478 in 7 of 12 human malignant glioma cell lines. Conversely, CD95-mediated and Apo2L-induced cell death are both inhibited by overexpression of EGFR in LN-229 cells. CD95L-induced cell death augmented by AG1478 is accompanied by enhanced processing of caspase 8. LN-229 cells overexpressing the viral caspase inhibitor, crm-A, are not sensitized to CD95L-induced cell death by AG1478, indicating that EGFR exerts its antiapoptotic properties through a caspase 8-dependent pathway. These data define a modulatory effect of EGFR-activity on death ligand-induced apoptosis and indicate that EGFR inhibition is likely to improve the efficacy of death ligand-based cancer therapies. Furthermore, it is tempting to speculate that EGFR amplification protects tumor cells from death ligand-mediated host immune responses in vivo and that EGFR's effects on death receptor-mediated apoptosis may explain the anti-tumor effects of non-cytotoxic, unarmed anti-EGFR family antibodies. [source]


    LBY135, a novel anti-DR5 agonistic antibody induces tumor cell,specific cytotoxic activity in human colon tumor cell lines and xenografts,

    DRUG DEVELOPMENT RESEARCH, Issue 2 2008
    Jing Li
    Abstract TRAIL (TNF-related apoptosis-inducing ligand) induces apoptosis on binding to DR4 and DR5 receptors on the surface of tumor cells. These receptors are of particular interest in the development of cancer therapeutics as they preferentially mediate tumor cell apoptosis. We have generated a chimeric anti-DR5 agonistic antibody, LBY135, from its murine parental antibody, LCR211, identified using hybridoma technology. Both LCR211 and LBY135 specifically bind to DR5 with nanomolar affinity, mimic TRAIL to induce cell death in tumor cells, and have little effect on non-transformed cells in vitro. The anti-DR5 antibody reduced viability in 45% of a panel of 40 human colon cancer cell lines with IC50 values of 20,nM or less. In vivo, using human colorectal tumor xenograft mouse models, LCR211 induced tumor regression and showed enhanced efficacy when combined with 5-FU. Both in vitro evaluation of ADCC (antibody-dependent cell-mediated cytotoxicity) and CDC (complement-dependent cytotoxicity), and in vivo studies using a non-functional DR5 specific antibody or SCID-Beige mice, suggested ADCC and CDC are unlikely to be the mechanism to ablate tumors in vivo. LBY135 and LCR211 appear to mediate cell death and tumor regression mainly through apoptosis, as demonstrated by the activation of caspase 3, caspase 8, M30, and TUNEL assay. In addition, the discovery of synergy between cross-linked LBY135 and TRAIL not only revealed the unique epitope of LBY135, but also demonstrated an additional mechanism of action for LBY135 in vivo. LBY135 demonstrates promise as a novel therapeutic for cancer treatment and is currently in Phase I clinical trials. Drug Dev Res 69: 69,82, 2008. © 2008 Wiley-Liss, Inc. [source]


    HIV-1 impairs in vitro priming of naïve T cells and gives rise to contact-dependent suppressor T cells

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 8 2010
    Karlhans F. Che
    Abstract Priming of T cells in lymphoid tissues of HIV-infected individuals occurs in the presence of HIV-1. DC in this milieu activate T cells and disseminate HIV-1 to newly activated T cells, the outcome of which may have serious implications in the development of optimal antiviral responses. We investigated the effects of HIV-1 on DC,naïve T-cell interactions using an allogeneic in vitro system. Our data demonstrate a dramatic decrease in the primary expansion of naïve T cells when cultured with HIV-1-exposed DC. CD4+ and CD8+ T cells showed enhanced expression of PD-1 and TRAIL, whereas CTLA-4 expression was observed on CD4+ T cells. It is worth noting that T cells primed in the presence of HIV-1 suppressed priming of other naïve T cells in a contact-dependent manner. We identified PD-1, CTLA-4, and TRAIL pathways as responsible for this suppresion, as blocking these negative molecules restored T-cell proliferation to a higher degree. In conclusion, the presence of HIV-1 during DC priming produced cells with inhibitory effects on T-cell activation and proliferation, i.e. suppressor T cells, a mechanism that could contribute to the enhancement of HIV-1 pathogenesis. [source]


    Pathogenesis of haemophilic synovitis: experimental studies on blood-induced joint damage

    HAEMOPHILIA, Issue 2007
    L. A. VALENTINO
    Summary., Hemarthrosis is a common manifestation of haemophilia, and joint arthropathy remains a frequent complication. Even though the exact mechanisms related to blood-induced joint disease have not yet been fully elucidated, it is likely that iron deposition in the synovium induces an inflammatory response that causes not only immune system activation but also stimulates angiogenesis. This process ultimately results in cartilage and bone destruction. Investigating the processes that occur in the early stages of blood-induced joint disease in humans has been very limited. Therefore, the use of haemophilic animal models is critical to augment the understanding of this phenomenon. This article discusses three cellular regulators (p53, p21 and TRAIL) induced in synovial tissue that are important for iron metabolism. A cartilage remodelling programme induced by the release of cytokines and growth factors that result in articular damage is also discussed. Full elucidation of the pathogenesis of haemophilic joint disease is required to identify new avenues for prevention and therapy. [source]


    Effect of H. pylori on the Expression of TRAIL, FasL and their Receptor Subtypes in Human Gastric Epithelial Cells and their Role in Apoptosis

    HELICOBACTER, Issue 5 2004
    Jan Hendrik Martin
    ABSTRACT Background and Aims., In the human stomach expression of TNF-related apoptosis inducing ligand (TRAIL) and its receptors and the modulatory role of Helicobacter pylori are not well described. Therefore, we investigated the effect of H. pylori on the expression of TRAIL, FasL and their receptors (TRAIL-R1-R4, Fas) in gastric epithelial cells and examined their role in apoptosis. Materials and Methods., mRNA and protein expression of TRAIL, FasL and their receptors were analyzed in human gastric epithelial cells using RT-PCR, Western blot, and immunohistochemistry. Gastric epithelial cells were incubated with FasL, TRAIL and/or H. pylori, and effects on expression, cell viability and epithelial apoptosis were monitored. Apoptosis was analyzed by histone ELISA, DAPI staining and immunohistochemistry. Results., TRAIL, FasL and their receptor subtypes were expressed in human gastric mucosa, gastric epithelial cell primary cultures and gastric cancer cells. TRAIL, FasL and H. pylori caused a time- and concentration-dependent induction of DNA fragmentation in gastric cancer cells with synergistic effects. In addition, H. pylori caused a selective up-regulation of TRAIL, TRAIL-R1 and Fas mRNA and protein expression in gastric cancer cells. Conclusions., Next to FasL and Fas, TRAIL and all of its receptor subtypes are expressed in the human stomach and differentially modulated by H. pylori. TRAIL, FasL and H. pylori show complex interaction mediating apoptosis in human gastric epithelial cells. These findings might be important for the understanding of gastric epithelial cell kinetics in patients with H. pylori infection. [source]


    Increased hepatotoxicity of tumor necrosis factor,related apoptosis-inducing ligand in diseased human liver,

    HEPATOLOGY, Issue 5 2007
    Xandra Volkmann
    Tumor necrosis factor,related apoptosis-inducing ligand (TRAIL) induces apoptosis in tumor cells but not in most normal cells and has therefore been proposed as a promising antitumor agent. Recent experiments suggested that isolated primary human hepatocytes but not monkey liver cells are susceptible to certain TRAIL agonists, raising concerns about the use of TRAIL in cancer treatment. Whether TRAIL indeed exerts hepatotoxicity in vivo and how this is influenced by chemotherapeutic drugs or liver disease are completely unknown. Employing different forms of recombinant TRAIL, we found that the cytokine can induce proapoptotic caspase activity in isolated human hepatocytes. However in marked contrast, these different TRAIL preparations induced little or no cytotoxicity when incubated with tissue explants of fresh healthy liver, an experimental model that may more faithfully mimic the in vivo situation. In healthy liver, TRAIL induced apoptosis only when combined with histone deacetylase inhibitors. Strikingly, however, TRAIL alone triggered massive apoptosis accompanied by caspase activation in tissue explants from patients with liver steatosis or hepatitis C viral infection. This enhanced sensitivity of diseased liver was associated with an increased expression of TRAIL receptors and up-regulation of proapoptotic Bcl-2 proteins. Conclusion: These results suggest that clinical trials should be performed with great caution when TRAIL is combined with chemotherapy or administered to patients with inflammatory liver diseases. (HEPATOLOGY 2007.) [source]


    COX-2 inhibits Fas-mediated apoptosis in cholangiocarcinoma cells

    HEPATOLOGY, Issue 3 2002
    Ugochukwu C. Nzeako
    Fas expression has been shown to negatively regulate the progression of cholangiocarcinoma cells in xenografts. However, many human cholangiocarcinomas express Fas, suggesting these cancers have developed mechanisms to inhibit Fas-mediated apoptosis. Cyclooxygenase-2 (COX-2), which generates prostanoids, is expressed by many cholangiocarcinomas. Therefore, our aim was to determine whether COX-2 expression inhibits death receptor,mediated apoptosis in KMBC cells, a cholangiocarcinoma cell line. These cells express messenger RNA for the death receptors Fas, tumor necrosis factor receptor 1 (TNF-R1), death receptor 4 (DR4), and DR5. Agonists for these death receptors, CH-11, TNF-,, and TRAIL all induced apoptosis. However, COX-2, whether induced by proinflammatory cytokines or transient transfection, only significantly inhibited Fas-mediated apoptosis. The COX-2 inhibitor NS-398 restored Fas-mediated apoptosis in COX-2 transfected cells. Prostaglandin E2 reduced apoptosis and mitochondrial depolarization after treatment with the Fas agonist CH-11. Of a variety of antiapoptotic proteins examined, COX-2/prostaglandin E2 only increased expression of Mcl-1, an antiapoptotic member of the Bcl-2 family. In conclusion, these data suggest that prostanoid generation by COX-2 specifically inhibits Fas-mediated apoptosis, likely by up-regulating Mcl-1 expression. Pharmacologic inhibition of COX-2 may be useful in augmenting Fas-mediated apoptosis of cholangiocarcinoma cells. [source]


    Expression of tumour necrosis factor-related apoptosis-inducing ligand and caspase-3 in relation to grade of inflammation and stage of fibrosis in chronic hepatitis C

    HISTOPATHOLOGY, Issue 5 2007
    A Piekarska
    Aim:, To assess whether the distribution of the recently described proapoptotic ligand, tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), and the apoptosis effector, caspase-3 alters with the degree of inflammation and fibrosis present in liver biopsy specimens from patients with chronic hepatitis C virus infection. Methods and results:, Expression of TRAIL and caspase-3 was assessed immunohistochemically in liver biopsy specimens obtained from 89 adults with chronic hepatitis C. Expression of TRAIL in hepatocytes correlated inversely with stage of fibrosis (P = 0.001), classified according to the Scheuer score; expression of caspase-3 in hepatocytes correlated with grade of inflammation (P = 0.012). Expression of TRAIL in hepatocytes was not correlated with grade of inflammation (P > 0.05); expression of caspase-3 was not correlated with stage of fibrosis (P > 0.05). Maximum expression of proapoptotic TRAIL protein was observed in cases with low grade inflammation (G0) and low stage fibrosis (S1). Maximum expression of caspase-3 in hepatocytes was observed in cases with high grade inflammation (G3,4) and high stage fibrosis (S3), but not with liver cirrhosis (S4). Conclusions:, There is a significant decrease in TRAIL expression with increasing grade of inflammation, whereas caspase-3 expression is significantly increased with advanced fibrosis, short of cirrhosis. [source]


    c-FLIP expression in colorectal carcinomas: association with Fas/FasL expression and prognostic implications

    HISTOPATHOLOGY, Issue 2 2007
    P Korkolopoulou
    Aims:, Disruption of apoptotic cell death has been implicated in tumour aggressiveness in colonic carcinogenesis. The Fas,Fas ligand (FasL) system is involved in the execution of apoptosis induced by the immune system. c-FLIP protein constitutes an inhibitor of Fas and other (TRAIL) death receptor-mediated apoptosis. The aim of this study was to investigate the simultaneous expression of Fas, FasL and c-FLIP in relation to standard clinicopathological parameters and patients' outcome in colorectal cancer. Methods and results:, Levels of Fas, FasL and c-FLIP protein expression were quantified immunohistochemically in paraffin-embedded tissues from 90 patients. Immunopositivity was detected for Fas, FasL and c-FLIP in 71%, 35.5% and 68.8% of cases, respectively. Concurrent expression of Fas/FasL was seen in 28 samples (31%), of which 24 (85.7%) also displayed c-FLIP positivity (P = 0.04). c-FLIP overexpression (> 10%) tended to prevail marginally in higher stage tumours (P = 0.09). Additionally, FasL and c-FLIP adversely affected survival on both univariate (P = 0.001 and P = 0.0024, respectively) and multivariate analysis [hazard ratio (HR) 3.491, P = 0.005 and HR 2.960, P = 0.036, respectively]. Conclusions:, The frequent expression and coexpression of Fas, FasL and c-FLIP in colorectal carcinoma implicates c-FLIP as an inhibitor of the Fas,FasL-induced death pathway in these tumours. Moreover, c-FLIP conveys independent prognostic information in the presence of classical prognosticators. [source]


    Osteoprotegerin (OPG),a potential new role in the regulation of endothelialcell phenotype and tumour angiogenesis?

    INTERNATIONAL JOURNAL OF CANCER, Issue 8 2006
    Simon S. Cross
    Abstract The progression of cancer depends on the establishment of a tumour blood supply, and therefore tumour angiogenesis has been identified as a major target for new anticancer agents. Recent reports have suggested that osteoprotegerin (OPG) is involved in the control of endothelial cell survival through the inhibition of the activity of tumour necrosis factor- (TNF) related apoptosis-inducing ligand (TRAIL). The role of OPG in human tumour development and angiogenesis is currently unknown. In the present study we demonstrate the ability of OPG to support endothelial cell survival, as well as the formation of cord-like structures in vitro using a matrigel tubule formation assay. Investigation of various human cancers demonstrated endothelial OPG expression in 59% of malignant tumours (n = 512), but in contrast, OPG was absent in endothelial cells associated with benign tumours and normal tissues (n = 178). In a series of 400 breast tumours, endothelial OPG expression was associated with high tumour grade and certain histological types. Our data show a clear separation in endothelial OPG expression between malignant tumours and nonmalignant tissues, supporting a potential biological role for this molecule in the development and/or maintenance of the tumour vasculature. This is the first study to report the proangiogenic effects of OPG in vitro, as well as correlating expression of OPG by tumour endothelial cells with clinicopathological data in human tumours. © 2005 Wiley-Liss, Inc. [source]


    Cloning, Sequencing, and Functional Characterization of the Rat Homologue of Receptor Activator of NF-,B Ligand,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 11 2000
    Jiake Xu
    Abstract A complementary DNA (cDNA) encoding the rat homologue of receptor activator of NF-,B ligand/osteoprotegerin ligand/osteoclast differentiation factor/tumor necrosis factor (TNF)-related activation-induced cytokine (RANKL/OPGL/ODF/TRANCE) was cloned and sequenced from tibias of ovariectomized (OVX) rats. The predicted amino acid sequence of rat RANKL (rRANKL) has 84% and 96% identity to that of human and mouse RANKL, respectively, and 35% and 37% similarity to that of human and mouse TNF-related apoptosis-inducing ligand (TRAIL), respectively. RANKL transcripts were expressed abundantly in the thymus and bone tissues of OVX rats. rRANKL has a single hydrophobic region between residues 53 and 69, which is most likely to serve as a transmembrane domain. The long C-terminal region containing ,-sheet-forming sequences of the TNF-like core is considered the extracellular region. Three truncated domains within the TNF-like core region were expressed as glutathione S-transferase (GST) fusion proteins and investigated for their ability to induce osteoclastogenesis. The results showed that GST-rRANKL (aa160-318) containing the full TNF-like core region had the highest capability to induce the formation of osteoclast-like cells from RAW264.7 cells. GST-rRANKL (aa239-318 and aa160-268) had lesser degrees of osteoclast inductivity. Furthermore, the GST-rRANKL (aa160-318) is capable of (1) inducing osteoclast formation from rat spleen cells in the presence of macrophage colony-stimulating factor (M-CSF), (2) stimulating mature rat osteoclast polarization and bone resorption ex vivo, and (3) inducing systemic hypercalcemia in vivo; thus the full TNF-like core region of rRANKL is an important regulator of calcium homeostasis and osteoclastic function. [source]


    DR5-mediated DISC controls caspase-8 cleavage and initiation of apoptosis in human glioblastomas

    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 6a 2010
    Anita C. Bellail
    Abstract To explore the molecular mechanisms by which glioblastomas are resistant to tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), we examined TRAIL signalling pathways in the tumours. TRAIL has four membrane-anchored receptors, death receptor 4/5 (DR4/5) and decoy receptor 1/2 (DcR1/2). Of these receptors, only DR5 was expressed consistently in glioblastoma cell lines and tumour tissues, ruling out the role of DcR1/2 in TRAIL resistance. Upon TRAIL binding, DR5 was homotrimerized and recruited Fas-associated death domain (FADD) and caspase-8 for the assembly of death-inducing signalling complex (DISC) in the lipid rafts of the plasma membrane. In the DISC, caspase-8 was cleaved and initiated apoptosis by cleaving downstream caspases in TRAIL-sensitive glioblastoma cells. In TRAIL-resistant cells, however, DR5-mediated DISC was modified by receptor-interacting protein (RIP), cellular FADD-like interleukin-1,-converting enzyme inhibitory protein (c-FLIP) and phosphoprotein enriched in diabetes or in astrocyte-15 (PED/PEA-15). This DISC modification occurred in the non-raft fractions of the plasma membrane and resulted in the inhibition of caspase-8 cleavage and activation of nuclear factor-,B (NF-,B). Treatment of resistant cells with parthenolide, an inhibitor of inhibitor of ,B (I-,B), eliminated TRAIL-induced NF-,B activity but not TRAIL resistance. In contrast, however, targeting of RIP, c-FLIP or PED/PEA-15 with small interfering RNA (siRNA) led to the redistribution of the DISC from non-rafts to lipid rafts and eliminated the inhibition of caspase-8 cleavage and thereby TRAIL resistance. Taken together, this study indicates that the DISC modification by RIP, c-FLIP and PED/PEA-15 is the most upstream event in TRAIL resistance in glioblastomas. [source]


    Osteoprotegerin production by breast cancer cells is suppressed by dexamethasone and confers resistance against TRAIL-induced apoptosis

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2009
    Tilman D. Rachner
    Abstract Osteoprotegerin (OPG) is a decoy receptor for receptor activator of NF-,B ligand (RANKL) and TNF-related apoptosis-inducing ligand (TRAIL). While RANKL is essential for osteoclastogenesis and facilitates breast cancer migration into bone, TRAIL promotes breast cancer apoptosis. We analyzed the expression of OPG and TRAIL and its modulation in estrogen receptor-positive MCF-7 cells and receptor-negative MDA-MB-231 cells. In both cells, OPG mRNA levels and protein secretion were dose- and time-dependently enhanced by interleukin (IL)-1, and suppressed by dexamethasone. In contrast to MCF-7 cells, MDA-MB-231 abundantly expressed TRAIL mRNA, which was enhanced by IL-1, and inhibited by dexamethasone. TRAIL activated pro-apoptotic caspase-3, -7, and poly-ADP-ribose polymerase and decreased cell numbers of MDA-MB-231, but had no effect on MCF-7 cells. Gene silencing siRNA directed against OPG resulted in a 31% higher apoptotic rate compared to non-target siRNA-treated MDA-MB-231 cells. Furthermore, TRAIL induced significantly less apoptosis in cells cultured in conditioned media (containing OPG) compared to cells exposed to TRAIL in fresh medium lacking OPG (P,<,0.01) and these protective effects were reversed by blocking OPG with its specific ligand RANKL (P,<,0.05). The association between cancer cell survival and OPG production by MDA-MB-231 cells was further supported by the finding, that modulation of OPG secretion using IL-1, or dexamethasone prior to TRAIL exposure resulted in decreased and increased rate of apoptosis, respectively (P,<,0.05). Thus, OPG secretion by breast cancer cells is modulated by cytokines and dexamethasone, and may represent a critical resistance mechanism that protects against TRAIL-induced apoptosis. J. Cell. Biochem. 108: 106,116, 2009. © 2009 Wiley-Liss, Inc. [source]


    Overexpression of Par-4 enhances thapsigargin-induced apoptosis via down-regulation of XIAP and inactivation of Akt in human renal cancer cells

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2008
    Tae-Jin Lee
    Abstract The prostate-apoptosis-response-gene-4 (Par-4) protein has been shown to function as an effector of cell death in response to various apoptotic stimuli that trigger mitochondria and membrane receptor-mediated cell death pathways. We found that overexpressing Par-4 by stable transfection sensitizes Caki cells to induction of apoptosis by TRAIL and drugs that induce endoplasmic reticulum (ER) stress [thapsigargin (TG), tunicamycin (TU) and etoposide]. Ectopic expression of Par-4 is associated with decreased levels of XIAP protein in TG-treated cells, caused in part by XIAP protein instability and caspase activation. Levels of phospho-Akt are decreased in Caki/Par-4 cells to a significantly greater extent than in Caki/Vector cells by treatment with TG, and this is in turn associated with decreased levels of phospho-PDK1, the kinase upstream of Akt. In conclusion, we provide evidence that ectopic expression of Par-4 sensitizes Caki cells to TG and that XIAP protein instability and inactivation of Akt are important in cellular pathways affected by Par-4. J. Cell. Biochem. 103: 358,368, 2008. © 2007 Wiley-Liss, Inc. [source]


    Differential control of apoptosis by DJ-1 in prostate benign and cancer cells

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2004
    Yaacov Hod
    Abstract DJ-1 is a conserved protein reported to be involved in diverse cellular processes ranging from cellular transformation, control of protein,RNA interaction, oxidative stress response to control of male infertility, among several others. Mutations in the human gene have been shown to be associated with an autosomal recessive, early onset Parkinson's disease (PARK7). The present study examines the control of DJ-1 expression in prostatic benign hyperplasia (BPH-1) and cancer (PC-3) cell lines in which DJ-1 abundance differs significantly. We show that while BPH-1 cells exhibit low basal level of DJ-1 expression, stress-inducing agents such as H2O2 and mitomycin C markedly increase the intracellular level of the polypeptide. In contrast, DJ-1 expression is relatively high in PC-3 cells, and incubation with the same cytotoxic drugs does not modulate further the level of the polypeptide. In correlation with the expression of DJ-1, both cytotoxic agents activate the apoptotic pathway in the prostatic benign cells but not in PC-3 cells, which are resistant to their action. We further demonstrate that incubation of BPH-1 cells with TNF-related-apoptosis-inducing-ligand/Apo-2L (TRAIL) also enhances DJ-1 expression and that TRAIL and H2O2 act additively to stimulate DJ-1 accumulation but synergistically in the activation of the apoptotic pathway. Time-course analysis of DJ-1 stimulation shows that while DJ-1 level increases without significant lag in TRAIL-treated cells, there is a delay in H2O2 -treated cells, and that the increase in DJ-1 abundance precedes the activation of apoptosis. Unexpectedly, over-expression of DJ-1 de-sensitizes BPH-1 cells to the action of apoptotic-inducing agents. However, RNA-interference-mediated silencing of DJ-1 expression results in sensitization of PC-3 cells to TRAIL action. These results are consistent with a model in which DJ-1 is involved in the control of cell death in prostate cell lines. DJ-1 appears to play a differential role between cells expressing a low but inducible level of DJ-1 (e.g., BPH-1 cells) and those expressing a high but constitutive level of the polypeptide (e.g., PC-3 cells). © 2004 Wiley-Liss, Inc. [source]


    Aberrant expression of TRAIL in B chronic lymphocytic leukemia (B-CLL) cells

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2005
    Paola Secchiero
    Analysis of peripheral blood (>85% CD19+/CD5+ B) lymphocytes, obtained from 44 patients affected by B chronic lymphoid leukemia (B-CLL), showed that surface TNF-related apoptosis inducing ligand (TRAIL) was expressed in all samples and at higher levels with respect to unfractionated lymphocytes and purified CD19+ B cells, obtained from 15 normal blood donors. Of note, in a subset of B-CLL samples, the addition to B-CLL cultures of a TRAIL-R1-Fc chimera, which binds at high affinity to surface TRAIL, significantly decreased the percentage of viable cells with respect to untreated control B-CLL cells, suggesting that surface TRAIL may play an unexpected role in promoting B-CLL cell survival. In spite of the majority of B-CLL lymphocytes expressed variable surface levels of "death receptors" TRAIL-R1 and TRAIL-R2, the addition in culture of recombinant TRAIL increased (>20% vs. controls) the degree of spontaneous apoptosis in only 11/44 of the B-CLL samples, had no effect in 19/44, while it significantly increased leukemic cell survival in 14/44. Taken together, these findings suggest that an aberrant expression of TRAIL might contribute to the pathogenesis of B-CLL by promoting the survival in a subset of B-CLL cells. © 2005 Wiley-Liss, Inc. [source]


    HIV-1 Tat protein concomitantly down-regulates apical caspase-10 and up-regulates c-FLIP in lymphoid T cells: A potential molecular mechanism to escape TRAIL cytotoxicity

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2005
    Davide Gibellini
    In this study, we showed the existence of a positive correlation between the amount of human immunodeficiency virus-type 1 (HIV-1) RNA in HIV-1 seropositive subjects and the plasma levels of TRAIL. Since it has been previously demonstrated that HIV-1 Tat protein up-regulates the expression of TRAIL in monocytic cells whereas tat -expressing lymphoid cells are more resistant to TRAIL cytotoxicity, we next investigated the effect of Tat on the expression/activity of both apical caspase-8 and -10, which play a key role in mediating the initial phases of apoptosis by TRAIL, and c-FLIP. Jurkat lymphoblastoid human T cell lines stably transfected with a plasmid expressing wild-type (HIV-1) tat gene showed normal levels of caspase-8 but significantly decreased levels of caspase-10 at both mRNA and protein levels with respect to Jurkat transfected with the control plasmid or with a mutated (cys22) non-functional tat cDNA. A significant decrease of caspase-10 expression/activity was also observed in transient transfection experiments with plasmid carrying tat cDNA. Moreover, c-FLIPL and c-FLIPS isoforms were up-regulated in tat -expressing cells at both mRNA and protein level in comparison with control cells. Taken together, these results provide a molecular basis to explain the resistance of tat -expressing Jurkat cells to apoptosis induced by TRAIL and, possibly, to other death-inducing ligands. © 2004 Wiley-Liss, Inc. [source]


    EPI distortion correction from a simultaneously acquired distortion map using TRAIL

    JOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 4 2006
    Andrew N. Priest D.Phil
    Abstract Purpose To develop a method for shot-by-shot distortion correction of single-shot echo-planar imaging (EPI) that is capable of correcting each image individually using a distortion measurement performed during acquisition of the image itself. Materials and Methods The recently-introduced method known as two reduced acquisitions interleaved (TRAIL) was extended to measure the distribution of the main magnetic field B0 with each shot. This corresponded to a map of distortion, and allowed distortion to be corrected in the acquired images. Results Distortion-corrected images were demonstrated in the human brain. The distortion field could be directly visualized using the "stripe" distribution imposed by the TRAIL pulse sequence. This confirmed the success of the correction. Over a time-course measurement of 10 images, variance was reduced by using shot-by-shot distortion correction compared to correction with a constant field map. Conclusion Shot-by-shot distortion correction may be performed for EPI images acquired using an extension of the TRAIL technique, ensuring that the correction reflects the actual distortion pattern and not merely a previously measured, but possibly no longer valid, distortion field. This avoids errors due to changes in the distortion field or misregistration of a previously measured distortion map resulting from subject motion. J. Magn. Reson. Imaging 2006. © 2006 Wiley-Liss, Inc. [source]


    RANKL/OPG/TRAIL plasma levels and bone mass loss evaluation in antiretroviral naive HIV-1-positive men

    JOURNAL OF MEDICAL VIROLOGY, Issue 10 2007
    Davide Gibellini
    Abstract Osteopenia and osteoporosis are common in HIV-1-infected individuals and represent a challenge in clinical and therapeutic management. This report investigated osteopenia/osteoporosis in a group of 31 antiretroviral naive HIV-1-positive men and the role of specific molecules belonging to TNF and the TNF-receptor family in HIV-1-related bone mass loss. Osteoprotegerin (OPG), the receptor activator of NF-,b-ligand (RANKL), and the TNF-related apoptosis-inducing ligand (TRAIL) were significantly increased in the plasma of antiretroviral naive HIV-1-positive patients compared to a control group of healthy blood donors. In addition, TRAIL and RANKL plasma concentrations were positively correlated to HIV-1-RNA viral load. Measurement of bone mineral density in 20 out of 31 HIV-1-positive subjects disclosed osteopenia/osteoporosis in 40% of these patients. The antiretroviral naive HIV-1-positive subjects with low bone mineral density had a decreased plasma OPG/RANKL ratio and a plasma RANKL concentration >500 pg/ml. Together, these data indicate that plasma concentrations of specific factors involved in bone homeostasis were increased during HIV-1 infection and that RANKL and OPG/RANKL ratio deregulation may be involved in osteopenia/osteoporosis occurring in antiretroviral naive HIV-1 individuals. J. Med. Virol. 79:1446,1454, 2007. © Wiley-Liss, Inc. [source]


    Apoptosis-associated gene expression in HIV-infected patients in response to successful antiretroviral therapy,

    JOURNAL OF MEDICAL VIROLOGY, Issue 2 2007
    Emanuela Balestrieri
    Abstract The simultaneous expression of 19 apoptosis-related genes was analyzed by RNA-protection assay in peripheral blood mononuclear cells of HIV-infected patients before and during successful antiretroviral therapy (ART). After 12 months of therapy, the expression of the pro-apoptotic genes FAS, FAS-L, FAF-1, FADD, CASPASE-8, DR3, TRAIL, TNFR-1, TRADD, and BAX was significantly downregulated with respect to time 0, while that of BCL-2, BCL-XL, and MCL-1 was significantly upregulated. The data suggest that inhibition of cell death in HIV-positive patients under successful therapy is the result of a complex network of multifactor signaling, correlated with both death and survival of lymphocytes. J. Med. Virol. 79:111,117, 2007. © 2006 Wiley-Liss, Inc. [source]


    Oligodendrocyte injury in multiple sclerosis: a role for p53

    JOURNAL OF NEUROCHEMISTRY, Issue 3 2003
    Karolina Wosik
    Abstract Multiple sclerosis (MS) is a neurological disorder characterized by myelin destruction and a variable degree of oligodendrocyte death. We have previously shown that overexpression of the transcription factor p53 can induce oligodendrocyte apoptosis. We investigated the mechanism of p53-induced apoptosis using primary cultures of central nervous system-derived adult human oligodendrocytes. Adenovirus-mediated p53 overexpression resulted in up-regulation of the death receptors Fas, DR4 and DR5 with subsequent caspase-mediated apoptosis of the oligodendrocytes. The oligodendrocytes were protected from p53-induced cell death by blocking signaling through Fas and/or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptors. Although lower levels of p53 did not induce apoptosis, the increase in death receptor expression was sufficient to render the oligodendrocytes susceptible to apoptosis in the presence of exogenous Fas ligand and TRAIL. These ligands are present in the inflammatory milieu of active MS lesions. In situ analysis of active MS lesions revealed increased p53 expression in oligodendrocytes in lesions that featured oligodendrocyte apoptosis and cell loss. Our data provide evidence for a novel role for p53 in the pathogenesis of MS. [source]


    Studies on search for bioactive natural products targeting TRAIL signaling leading to tumor cell apoptosis

    MEDICINAL RESEARCH REVIEWS, Issue 5 2008
    Masami Ishibashi
    Abstract Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis in many transformed cells but not in normal cells and, hence, has been expected as a new anticancer strategy. During our studies on search for bioactive natural products from various natural resources such as plants and microorganisms, we recently identified several natural products which exhibited activities related to TRAIL signaling. Dimeric sesquiterpenoids isolated from Zingiberaceous plant, Curcuma parviflora, showed enhancement activity of gene expression of TRAIL-receptor and TRAIL-receptor protein level. Several new isoflavone natural products, named brandisianins, were isolated from Leguminosaeous plant, Millettia brandisiana, by our screening study targeting TRAIL-receptor expression enhancement activity. A dihydroflavonol (BB1) that was extracted from Compositaeous plant, Blumea balsamifera, and fuligocandin B, a new anthranilylproline-indole alkaloid isolated from myxomycete were found to exhibit reversal effect of TRAIL resistance activity. © 2008 Wiley Periodicals, Inc. Med Res Rev, 28, No. 5, 688,714, 2008 [source]


    A critical role of TRAIL expressed on cotransplanted hepatic stellate cells in prevention of islet allograft rejection

    MICROSURGERY, Issue 4 2010
    Horng-Ren Yang M.D.
    Hepatic stellate cells (HSCs) have demonstrated a strong T-cell inhibitory activity. In a mouse islet transplantation model, cotransplanted HSCs can protect islet allografts from rejection. The involved mechanism is not fully understood. We showed in this study that expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), an important apoptosis-inducing ligand, on HSCs was crucial in protection of islet allografts, since HSCs derived from TRAIL knockout mice demonstrated less inhibitory activity towards T-cell proliferative responses, and substantially lost their capacity in protecting cotransplanted islet allografts from rejection, suggesting that TRAIL-mediated T cell apoptotic death is important in HSC-delivered immune regulation activity. © 2009 Wiley-Liss, Inc. Microsurgery 2010. [source]


    PKC-mediated secretion of death factors in LNCaP prostate cancer cells is regulated by androgens

    MOLECULAR CARCINOGENESIS, Issue 3 2009
    Liqing Xiao
    Abstract Activation of PKC, in androgen-dependent LNCaP prostate cancer cells leads to apoptosis via the activation of p38 MAPK and JNK cascades. We have recently shown that treatment of LNCaP cells with phorbol 12-myristate 13-acetate (PMA) leads to a PKC,-mediated autocrine release of death factors, including the cytokines TNF, and TRAIL, and that conditioned medium (CM) collected from PMA-treated LNCaP cells promotes the activation of the extrinsic apoptotic cascade. Interfering with this autocrine loop either at the level of factor release or death receptor activation/signaling markedly impaired the PMA apoptotic response. In the present study we show that this PKC,-dependent autocrine mechanism is greatly influenced by androgens. Indeed, upon androgen depletion, which down-regulates PKC, expression, TNF, and TRAIL mRNA induction and release by PMA are significantly diminished, resulting in a reduced apoptogenic activity of the CM and an impaired ability of the CM to activate p38 MAPK and JNK. These effects can be rescued by addition of the synthetic androgen R1881. Furthermore, RNAi depletion of the androgen-receptor (AR) from LNCaP cells equally impaired PMA responses, suggesting that PKC-mediated induction of death factor secretion and apoptosis in LNCaP prostate cancer cells are highly sensitive to hormonal control. © 2008 Wiley-Liss, Inc. [source]


    Review: On TRAIL for malignant glioma therapy?

    NEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 3 2010
    J. M. A. Kuijlen
    J. M. A. Kuijlen, E. Bremer, J. J. A. Mooij, W. F. A. den Dunnen and W. Helfrich (2010) Neuropathology and Applied Neurobiology36, 168,182 On TRAIL for malignant glioma therapy? Glioblastoma (GBM) is a devastating cancer with a median survival of around 15 months. Significant advances in treatment have not been achieved yet, even with a host of new therapeutics under investigation. Therefore, the quest for a cure for GBM remains as intense as ever. Of particular interest for GBM therapy is the selective induction of apoptosis using the pro-apoptotic tumour necrosis factor-related apoptosis-inducing ligand (TRAIL). TRAIL signals apoptosis via its two agonistic receptors TRAIL-R1 and TRAIL-R2. TRAIL is normally present as homotrimeric transmembrane protein, but can also be processed into a soluble trimeric form (sTRAIL). Recombinant sTRAIL has strong tumouricidal activity towards GBM cells, with no or minimal toxicity towards normal human cells. Unfortunately, GBM is a very heterogeneous tumour, with multiple genetically aberrant clones within one tumour. Consequently, any single agent therapy is likely to be not effective enough. However, the anti-GBM activity of TRAIL can be synergistically enhanced by a variety of conventional and novel targeted therapies, making TRAIL an ideal candidate for combinatorial strategies. Here we will, after briefly detailing the biology of TRAIL/TRAIL receptor signalling, focus on the promises and pitfalls of recombinant TRAIL as a therapeutic agent alone and in combinatorial therapeutic approaches for GBM. [source]


    Lower motor neuron loss in multiple sclerosis and experimental autoimmune encephalomyelitis,

    ANNALS OF NEUROLOGY, Issue 3 2009
    Johannes Vogt MD
    Objective Multiple sclerosis (MS) is considered a chronic inflammatory and demyelinating disease of the central nervous system. Evidence that axonal and neuronal pathology contributes to the disease is accumulating, however, the distribution of neuronal injury as well as the underlying mechanisms have not yet been fully clarified. Here, we investigated the role of neuronal cell loss in MS and its animal model, experimental autoimmune encephalomyelitis (EAE). Methods We performed electrophysiological investigations in MS patients, including assessment of compound muscle action potentials and motor unit numbers and quantified neuronal cell loss in human MS samples and different EAE models by high-precision stereology. Results Both electrophysiological and morphological analyses indicated a massive loss of lower motor neurons in MS patients. We regularly found dying spinal motor neurons surrounded by CD3+ (CD4+ as well as CD8+) T cells expressing tumor necrosis factor,related apoptosis-inducing ligand (TRAIL). We observed a similar degree of damage and immune attack in different variants of EAE; the lower motor neurons were preserved in adoptive transfer EAE induced with TRAIL-deficient T lymphocytes. Interpretation Our study indicates that damage to lower motor neurons and TRAIL-mediated inflammatory neurodegeneration in the spinal cord contribute to MS pathology. Ann Neurol 2009;66:310,332 [source]


    The role of neutrophil apoptosis in juvenile-onset systemic lupus erythematosus

    ARTHRITIS & RHEUMATISM, Issue 8 2009
    Angela Midgley
    Objective Accumulation of apoptotic cells may lead to the development of systemic lupus erythematosus (SLE) through a breakdown in immune tolerance. Altered neutrophil apoptosis may contribute to nuclear autoantigen exposure, ultimately leading to autoantibody generation. This study aimed to determine whether neutrophil apoptosis is altered in patients with juvenile-onset SLE as compared with controls. Methods Apoptosis was measured in neutrophils from patients with juvenile-onset SLE (n = 12), adult-onset SLE (n = 6), and pediatric patients with inflammatory (n = 12) and noninflammatory (n = 12) conditions. Annexin V staining and flow cytometry were used to determine neutrophil apoptosis. Proapoptotic and antiapoptotic proteins were measured in sera and in neutrophil cell lysates. Results Neutrophil apoptosis was significantly increased in patients with juvenile-onset SLE as compared with the noninflammatory controls at time 0. Incubation of neutrophils with sera from patients with juvenile-onset SLE further increased neutrophil apoptosis as compared with incubation with sera from pediatric controls. Concentrations of TRAIL and FasL were significantly increased in sera from patients with juvenile-onset SLE, whereas interleukin-6, tumor necrosis factor ,, and granulocyte,macrophage colony-stimulating factor (GM-CSF) were significantly decreased. Addition of GM-CSF to sera from patients with juvenile-onset SLE significantly decreased neutrophil apoptosis as compared with juvenile-onset SLE sera alone. The expression of proapoptotic proteins (caspase 3, Fas, and FADD) was elevated in juvenile-onset SLE neutrophils, whereas the expression of antiapoptotic proteins (cellular inhibitor of apoptosis 1 and 2 and X-linked inhibitor of apoptosis) was decreased. Neutrophil apoptosis correlated with biomarkers of disease activity (erythrocyte sedimentation rate and double-stranded DNA concentration) and the British Isles Lupus Assessment Group disease activity score. Conclusion Our data demonstrate an imbalance in proapoptotic and antiapoptotic factors in both neutrophils and sera from patients with juvenile-onset SLE. This imbalance results in increased neutrophil apoptosis in these patients. Correlations with markers of disease activity indicate that altered neutrophil apoptosis in juvenile-onset SLE patients may play a pathogenic role in this condition. [source]


    Chemical sensitization and regulation of TRAIL-induced apoptosis in a panel of B-lymphocytic leukaemia cell lines

    BRITISH JOURNAL OF HAEMATOLOGY, Issue 5 2003
    Jian Kang
    Summary., Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) effectively kills tumour cells but not normal cells. We investigated TRAIL sensitivity and the TRAIL-induced apoptosis signalling pathway in a panel of B-lymphocytic leukaemia cell lines. Depending upon TRAIL sensitivity, leukaemia cells could be divided into three groups: highly sensitive, moderately sensitive and resistant. TRAIL receptor-2 (DR5) plays an important role in transducing apoptosis signals. DR5 was internalized into the cytoplasm where it recruited FAS-associated death domain protein (FADD) under TRAIL stimulation in both sensitive and resistant cells. However, the active form of caspase-8 was recruited to FADD and only sensitive cells showed increased caspase-8 activity upon TRAIL stimulation. The caspase-8 specific inhibitor, Z-IETD, impaired caspase-8 activation and completely abrogated TRAIL-induced apoptosis. These results suggest that TRAIL resistance in B-lymphocytic leukaemia cells is due to negative regulation at the level of caspase-8 activation and that caspase-8 activation is an indispensable process in TRAIL-induced apoptosis. However, FADD-like interleukin-1 ,-converting enzyme inhibitory protein (c-FLIPL) was similarly expressed and down-regulated after TRAIL stimulation in both sensitive and resistant cells. Interestingly, in some cell lines, TRAIL sensitivity and caspase-8 activity was enhanced or restored with the treatment of cycloheximide (CHX). In addition, X-linked inhibitor of apoptosis (XIAP) levels decreased significantly and rapidly following treatment with CHX. Down-regulation of XIAP may be responsible for enhancement or restoration of TRAIL sensitivity after CHX treatment in B-lymphocytic leukaemia cells. [source]


    Is the modulatory effect of pregnancy in multiple sclerosis associated with changes in blood apoptotic molecules?

    ACTA NEUROLOGICA SCANDINAVICA, Issue 3 2010
    S. Rinta
    Rinta S, Airas L, Elovaara I. Is the modulatory effect of pregnancy in multiple sclerosis associated with changes in blood apoptotic molecules? Acta Neurol Scand: 2010: 122: 168,174. © 2010 John Wiley & Sons A/S. Objective,,, We examined whether the modulatory effect of pregnancy on multiple sclerosis (MS) is associated with changes in the apoptotic molecules in sera. Subjects and methods,,, The serum levels of tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL), sFas, Fas ligand (sFasL) and macrophage migration inhibitory factor were analyzed from 19 MS patients and 14 controls during late pregnancy and post-partum. The obtained results were related to disease activity and the progression of MS. Results,,, Disease activity decreased during pregnancy. The levels of sTRAIL and sFasL increased from late pregnancy to post-partum situation in both MS patients and controls, but in MS patients the changes in the levels of sTRAIL from late pregnancy to post-partum were smaller than in controls. Conclusions,,, Post-partum upregulation of TRAIL and FasL seems to be caused by physiologic reactivation of the mother's immune system after pregnancy. An increased risk of relapses in MS post-partum may be associated with changes in the immunomodulatory potential of these apoptotic molecules. [source]