Home About us Contact | |||
Tract Malformations (tract + malformation)
Selected AbstractsGenetic modifiers of the physical malformations in velo-cardio-facial syndrome/DiGeorge syndromeDEVELOPMENTAL DISABILITIES RESEARCH REVIEW, Issue 1 2008Vimla S. Aggarwal Abstract Velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS), the most common micro-deletion disorder in humans, is characterized by craniofacial, parathyroid, and thymic defects as well as cardiac outflow tract malformations. Most patients have a similar hemizygous 3 million base pair deletion on 22q11.2. Studies in mouse have shown that Tbx1, a T- box containing transcription factor present on the deleted region, is likely responsible for the etiology of the syndrome. Furthermore, mutations in TBX1 have been found in rare non-deleted patients. Despite having the same sized deletion, most VCFS/DGS patients exhibit significant clinical variability. Stochastic, environmental and genetic factors likely modify the phenotype of patients with the disorder. Here, we review mouse genetics studies, which may help identify possible genetic modifiers for the physical malformations in VCFS/DGS. © 2008 Wiley-Liss, Inc. Dev Disabil Res Rev 2008;14:19,25. [source] A mixture of seven antiandrogens induces reproductive malformations in ratsINTERNATIONAL JOURNAL OF ANDROLOGY, Issue 2 2008Cynthia V. Rider Summary To date, regulatory agencies have not considered conducting cumulative risk assessments for mixtures of chemicals with diverse mechanisms of toxicity because it is assumed that the chemicals will act independently and the individual chemical doses are not additive. However, this assumption is not supported by new research addressing the joint effects of chemicals that disrupt reproductive tract development in the male rat by disrupting the androgen signalling pathway via diverse mechanisms of toxicity [i.e. androgen receptor (AR) antagonism in the reproductive tract vs. inhibition of androgen synthesis in the foetal testis]. In this study, pregnant rats were exposed to four dilutions of a mixture containing vinclozolin, procymidone, linuron, prochloraz, benzyl butyl phthalate, dibutyl phthalate and diethylhexyl phthalate during the period of sexual differentiation and male offspring were assessed for effects on hormone sensitive endpoints including: anogenital distance, infant areolae retention and reproductive tract tissue weights and malformations. The ratio of the chemicals in the mixture was based upon each chemical's ED50 for inducing reproductive tract malformations (hypospadias or epididymal agenesis). The observed responses from the mixture were compared with predicted responses generated with a toxic equivalency approach and models of dose addition, response addition or integrated addition. As hypothesized, we found that the mixture of chemicals that alter the androgen signalling pathway via diverse mechanisms disrupted male rat reproductive tract differentiation and induced malformations in a cumulative, dose-additive manner. The toxic equivalency and dose addition models provided the best fit to observed responses even though the chemicals do not act via a common cellular mechanism of action. The current regulatory framework for conducting cumulative risk assessments needs to consider the results, including those presented herein, which indicate that chemicals that disrupt foetal tissues during sexual differentiation act in a cumulative, dose-additive manner irrespective of the specific cellular mechanism of toxicity. [source] Imaging of congenital lower respiratory tract malformations: Prenatal diagnosis by magnetic resonance imagingPEDIATRIC PULMONOLOGY, Issue S23 2001Dr. Anne M. Hubbard No abstract is available for this article. [source] Imaging of congenital lower respiratory tract malformations: Prenatal diagnosis by magnetic resonance imagingPEDIATRIC PULMONOLOGY, Issue S23 2001Dr. Anne M. Hubbard No abstract is available for this article. [source] Angioarchitecture of the venous and capillary system in heart defects induced by retinoic acid in mice,BIRTH DEFECTS RESEARCH, Issue 7 2009Anna Ratajska Abstract BACKGROUND: Corrosion casting and immunohistochemical staining with anti-alpha smooth muscle actin and anti-CD34 was utilized to demonstrate the capillary plexus and venous system in control and malformed mouse hearts. METHODS: Outflow tract malformations (e.g., double outlet right ventricle, transposition of the great arteries, and common truncus arteriosus) were induced in progeny of pregnant mice by retinoic acid administration at day 8.5 of pregnancy. RESULTS: Although control hearts exhibited areas in which capillaries tended to be oriented in parallel arrays, the orientation of capillaries in the respective areas of malformed hearts was chaotic and disorganized. The major branch of a conal vein in control hearts runs usually from the left side of the conus to its right side at the root of the pulmonary trunk and opens to the right atrium below the right auricle; thus, it has a curved course. On the other hand, a conal vein in malformed hearts courses from the left side or from the anterior side of the conus and tends to traverse straight upwards along the dextroposed aorta or along the aortopulmonary groove with its proximal part located outside of the heart. Other cardiac veins in outflow tract malformations are positioned in the same locations as in control hearts. CONCLUSIONS: We postulate that the changed location of the conal vein and disorganized capillary plexus result from malformed morphogenesis of the outflow tract and/or a disturbed regulation of angiogenic growth factor release from the adjacent environment. Birth Defects Research (Part A), 2009. © 2009 Wiley-Liss, Inc. [source] |