Tracer Tests (tracer + test)

Distribution by Scientific Domains


Selected Abstracts


Analysis of a Vertical Dipole Tracer Test in Highly Fractured Rock

GROUND WATER, Issue 5 2002
William E. Sanford
The results of a vertical dipole tracer experiment performed in highly fractured rocks of the Clare Valley, South Australia, are presented. The injection and withdrawal piezometers were both screened over 3 m and were separated by 6 m (midpoint to midpoint). Due to the long screen length, several fracture sets were intersected, some of which do not connect the two piezometers. Dissolved helium and bromide were injected into the dipole flow field for 75 minutes, followed by an additional 510 minutes of flushing. The breakthrough of helium was retarded relative to bromide, as was expected due to the greater aqueous diffusion coefficient of helium. Also, only 25% of the total mass injected of both tracers was recovered. Modeling of the tracer transport was accomplished using an analytical one-dimensional flow and transport model for flow through a fracture with diffusion into the matrix. The assumptions made include: streamlines connecting the injection and withdrawal point can be modeled as a dipole of equal strength, flow along each streamline is one dimensional, and there is a constant Peclet number for each streamline. In contrast to many other field tracer studies performed in fractured rock, the actual travel length between piezometers was not known. Modeling was accomplished by fitting the characteristics of the tracer breakthrough curves (BTCs), such as arrival times of the peak concentration and the center of mass. The important steps were to determine the fracture aperture (240 ,m) based on the parameters that influence the rate of matrix diffusion (this controls the arrival time of the peak concentration); estimating the travel distance (11 m) by fitting the time of arrival of the centers of mass of the tracers; and estimating fracture dispersivity (0.5 m) by fitting the times that the inflection points occurred on the front and back limbs of the BTCs. This method works even though there was dilution in the withdrawal well, the amount of which can be estimated by determining the value that the modeled concentrations need to be reduced to fit the data (,50%). The use of two tracers with different diffusion coefficients was not necessary, but it provides important checks in the modeling process because the apparent retardation between the two tracers is evidence of matrix diffusion and the BTCs of both tracers need to be accurately modeled by the best fit parameters. [source]


A Modular Injection System, Multilevel Sampler, and Manifold for Tracer Tests

GROUND WATER, Issue 6 2003
Brian J. Mailloux
Ground water injection and sampling systems were developed for bacterial transport experiments in both homogenous and heterogeneous unconsolidated, surficial aquifers. Two types of injection systems, a large single tank and a dynamic mixing tank, were designed to deliver more than 800 L of amended ground water to the aquifer over 12 hours, without altering the ground water temperature, pH, Eh, or dissolved gas composition. Two types of multilevel samplers (MLSs) were designed and installed. Permanent MLSs performed well for the homogenous surficial aquifer, but their installation procedure promoted vertical mixing, which could obfuscate experimental data obtained from vertically stratified, heterogeneous aquifers. A novel, removable MLS was designed to fit in 2- and 4-inch wells. Expandable O-rings between each sampling port hydraulically isolated each port for sample collection when a nut was tightened at the land surface. A low-cost vacuum manifold system designed to work with both MLS designs used 50 mL centrifuge tubes to efficiently sample 12 MLS ports with one peristaltic pump head. The integrated system was developed and used during four field campaigns over a period of three years. During each campaign, more than 3000 ground water samples were collected in less than one week. This system should prove particularly useful for ground water tracer, injection, and push-pull experiments that require high-frequency and/or high-density sampling. [source]


Discussion of "Comparison of Conductivity Values Obtained from Aquifer Pumping Tests and Conservative Tracer Tests," by William L. Niemann and Charles W. Rovey II, Ground Water Monitoring & Remediation, v. 20, no. 3, pages 122,128.

GROUND WATER MONITORING & REMEDIATION, Issue 3 2001
Fred J. Molz III
No abstract is available for this article. [source]


Contaminant Transport in Fractured Chalk: Laboratory and Field Experiments

GROUND WATER, Issue 6 2003
K. Witthüser
Laboratory experiments were performed on chalk samples from Denmark and Israel to determine diffusion and distribution coefficients. Batch tests were used to define sorption isotherms for naphthalene and o-xylene. Linear sorption isotherms were observed and described with Henry-isotherms. Because of the high purity and low contents of clay minerals and organic carbon, Danish and white Israeli chalk generally have low retardation capacities. Con-trarily, gray Israeli chalk, with organic carbon fractions as high as 1.092%, remarkably retards organic contaminants. The Koc concept is not applicable to predicting distribution coefficients based on the organic carbon content in the chalk samples. Effective diffusivities of o -xylene, naphthalene, and several artificial tracers were determined using through-diffusion experiments. Based on measured diffusion coefficients and available literature values, a chalk specific exponent of 2.36 for Archie's law was derived, allowing a satisfactory estimate of relative diffusivities in chalk. A field-scale tracer test with uranine and lithium was performed in the Negev desert (Israel) to examine the transfer-ability of diffusivities determined on small rock samples in the laboratory. Due to low recovery rates of the tracer, a modified single fissure dispersion model was used for inverse modeling of the breakthrough curves. Resulting diffusivities deviate insignificantly from the laboratory values, which are considered to be representative for the investigated part of the aquifer and applicable in transport models. [source]


Can Contaminant Transport Models Predict Breakthrough?

GROUND WATER MONITORING & REMEDIATION, Issue 4 2000
Wei-Shyuan "Stone" Peng
A solute breakthrough curve measured during a two-well tracer test was successfully predicted in 1986 using specialized contaminant transport models. Water was injected into a confined, unconsolidated sand aquifer and pumped out 125 feet (38.3 m) away at the same steady rate. The injected water was spiked with bromide for over three days; the outflow concentration was monitored for a month. Based on previous tests, the horizontal hydraulic conductivity of the thick aquifer varied by a factor of seven among 12 layers. Assuming stratified flow with small dispersivities, two research groups accurately predicted breakthrough with three-dimensional (12-layer) models using curvilinear elements following the arc-shaped flowlines in this test. Can contaminant transport models commonly used in industry, that use rectangular blocks, also reproduce this breakthrough curve? The two-well test was simulated with four MODFLOW-based models, MT3D (FD and HMOC options), MODFLOWT, MOC3D, and MODFLOW-SURFACT. Using the same 12 layers and small dispersivity used in the successful 1986 simulations, these models fit almost as accurately as the models using curvilinear blocks. Subtle variations in the curves illustrate differences among the codes. Sensitivities of the results to number and size of grid blocks, number of layers, boundary conditions, and values of dispersivity and porosity are briefly presented. The fit between calculated and measured breakthrough curves degenerated as the number of layers and/or grid blocks decreased, reflecting a loss of model predictive power as the level of characterization lessened. Therefore, the breakthrough curve for most field sites can be predicted only qualitatively due to limited characterization of the hydrogeology and contaminant source strength. [source]


Tracing solute infiltration using a combined method of dye tracer test and electrical resistivity tomography in an undisturbed forest soil profile

HYDROLOGICAL PROCESSES, Issue 21 2010
Jae Gon Kim
Abstract An accurate prediction of solute infiltration in a soil profile is important in the area of environmental science, groundwater and civil engineering. We examined the infiltration pattern and monitored the infiltration process using a combined method of dye tracer test and electrical resistivity tomography (ERT) in an undisturbed field soil (1 m × 1 m). A homogeneous matrix flow was observed in the surface soil (A horizon), but a preferential flow along macropores and residual rock structure was the dominant infiltration pattern in the subsurface soil. Saturated interflow along the slopping boundaries of A and C1 horizons and of an upper sandy layer and a lower thin clay layer in the C horizon was also observed. The result of ERT showed that matrix flow started first in A horizon and then the infiltration was followed by the preferential flows along the sloping interfaces and macropores. The ERT did not show as much detail as the dye-stained image for the preferential flow. However, the area with the higher staining density where preferential flow was dominant showed a relatively lower electrical resistivity. The result of this study indicates that ERT can be applied for the monitoring of solute transportation in the vadose zone. Copyright © 2010 John Wiley & Sons, Ltd. [source]


In situ determination of sulfate turnover in peatlands: A down-scaled push,pull tracer technique,

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 5 2008
Tobias Goldhammer
Abstract Bacterial sulfate reduction (BSR) is a key process in anaerobic respiration in wetlands and may have considerable impacts on methane emissions. A method to determine sulfate production and consumption in situ is lacking to date. We applied a single-well, injection-withdrawal tracer test for the in situ determination of potential sulfate turnover in a northern temperate peatland. Piezometers were installed in three peat depth levels (20, 30, and 50,cm) during summer 2004, and three series of injection-withdrawal cycles were carried out over a period of several days. Turnover rates of sulfate, calculated from first-order-reaction constant k (,0.097 to 0.053 h,1) and pore-water sulfate concentrations (approx. 10 µmol L,1), ranged from ,1.3 to ,9.0 nmol cm,3 d,1 for reduction and from +0.7 to +25.4 nmol cm,2 d,1 for production, which occurred after infiltration of water following a heavy rainstorm. Analysis of stable isotopes in peat-water sulfate revealed slightly increasing ,34S values and decreasing sulfate concentrations indicating the presence of BSR. The calculated low sulfur-fractionation factors of <2, are in line with high sulfate-reduction rates during BSR. Routine application will require technical optimization, but the method seems a promising addition to common ex situ techniques, as the investigated soil is not structurally altered. The method can furthermore be applied at low expense even in remote locations. [source]


The Geysers geothermal field: results from shear-wave splitting analysis in a fractured reservoir

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2005
Maya Elkibbi
SUMMARY Clear shear-wave splitting (SWS) is observed in 1757 high signal-to-noise ratio microearthquake seismograms recorded by two high density seismic arrays in the NW and the SE Geysers geothermal fields in California. The Geysers reservoir rocks within the study area are largely composed of lithic, low-grade metamorphism, well-fractured metagraywackes which commonly lack schistosity, warranting the general assumption that shear-wave splitting here is induced solely by stress-aligned fracturing in an otherwise isotropic medium. The high quality of observed shear-wave splitting parameters (fast shear-wave polarization directions and time delays) and the generally good data spatial coverage provide an unprecedented opportunity to demonstrate the applicability and limitations of the shear-wave splitting approach to successfully detect fracture systems in the shallow crust based on SWS field observations from a geothermal reservoir. Results from borehole stations in the NW Geysers indicate that polarization orientations range between N and N60E; while in the SE Geysers, ground surface stations show polarization directions that are generally N5E, N35E-to-N60E, N75E-to-N85E, and N20W-to-N55W. Crack orientations obtained from observed polarization orientations are in good agreement with independent field evidence, such as cracks in geological core data, tracer tests, locally mapped fractures, and the regional tectonic setting. Time delays range typically between 8 and 40 ms km,1, indicating crack densities well within the norm of fractured reservoirs. The sizeable collection of high resolution shear-wave splitting parameters shows evidence of prevalent vertical to nearly vertical fracture patterns in The Geysers field. At some locations, however, strong variations of SWS parameters with ray azimuth and incident angle within the shear-wave window of seismic stations indicate the presence of more complex fracture patterns in the subsurface. [source]


Solute and Colloid Transport in Karst Conduits under Low- and High-Flow Conditions

GROUND WATER, Issue 1 2008
Nadine Göppert
Solute and colloid transport in karst aquifers under low and high flows was investigated by tracer tests using fluorescent dyes (uranine) and microspheres of the size of pathogenic bacteria (1 ,m) and Cryptosporidium cysts (5 ,m), which were injected into a cave stream and sampled at a spring 2.5 km away. The two types of microspheres were analyzed using an epifluorescence microscope or a novel fluorescence particle counter, respectively. Uranine breakthrough curves (BTCs) were regular shaped and recovery approached 100%. Microsphere recoveries ranged between 27% and 75%. During low flow, the 1-,m spheres displayed an irregular BTC preceding the uranine peak. Only a very few 5-,m spheres were recovered. During high flow, the 1-,m-sphere BTC was regular and more similar to the uranine curve. BTCs were modeled analytically with CXTFIT using a conventional advection dispersion model (ADM) and a two-region nonequilibrium model (2RNE). The results show that (1) colloids travel at higher velocities than solutes during low flow; (2) colloids and solutes travel at similar velocities during high flow; (3) higher maximum concentrations occur during high flow; and (4) the 2RNE achieves a better fit, while the ADM is more robust, as it requires less parameters. [source]


Calculation of Elapsed Decimal Time for Tracing Studies

GROUND WATER, Issue 1 2008
Malcolm S. Field
Calculation of time of travel from tracing studies in hydrologic systems is critical to establishing pollutant arrival times from points of inflow to points outflow, calculating subsurface flow velocities, and determining other important transport parameters such as longitudinal dispersion. In addition, breakthrough curve modeling demands accurate time of travel calculations if model results are to have any realistic meaning. However, accurate time of travel calculations are very difficult for long tracer tests in which sampling schedules are not consistent, or when there are major disruptions such as may occur when adverse weather conditions cause automatic sampling equipment to fail. Long and inconsistent sampling times may be accurately converted to decimal times of travel by converting the conventionally recorded Coordinated Universal Time for sampling date and time event to a baseline time standard. By converting to a baseline time standard, all recorded dates and times are linked to the established baseline standard so that each succeeding sampling date and time are correctly determined relative to the previous sampling date and time and to the injection date and time. [source]


Regulation of Injected Ground Water Tracers

GROUND WATER, Issue 4 2000
Skelly A. Holmbeck-Pelham
Ground water tracer tests are routinely performed to estimate aquifer flow and transport properties, including the determination of well capture zones, hydrogeologic parameters, and contaminant travel times. Investigators may be unaware of tracer test reporting requirements and may fail to notify their regulatory agency prior to conducting tracer tests. The injection of tracers falls under the jurisdiction of the federal Underground Injection Control (UIC) program, which regulates the introduction of substances into underground sources of drinking water as part of the Safe Drinking Water Act. The UIC program is administered by the U.S. Environmental Protection Agency (EPA) and by states with EPA-approved programs. The federal UIC program requires that tracer tests must not endanger underground sources of drinking water, and all tracer tests must be reported prior to injection. We contacted the UIC program administrator for every state in early 1997. Some states report having more stringent requirements, while some states do not meet minimum federal requirements. Although the primary responsibility for ground water tracer selection and use rests on the investigator, national guidance is required to assure compliance with the UIC program. To assist investigators, we present acceptable tracers that have been identified by two states, Nevada and South Carolina, that require no further regulatory review. [source]


DNAPL Characterization Methods and Approaches, Part 2: Cost Comparisons

GROUND WATER MONITORING & REMEDIATION, Issue 1 2002
Mark L. Kram
Contamination from the use of chlorinated solvents, often classified as dense nonaqueous phase liquids (DNAPLs) when in an undissolved state, pose environmental threats to ground water resources worldwide. DNAPL site characterization method performance comparisons are presented in a companion paper (Kram et al. 2001). This study compares the costs for implementing various characterization approaches using synthetic unit model scenarios (UMSs), each with particular physical characteristics. Unit costs and assumptions related to labor, equipment, and consumables are applied to determine costs associated with each approach for various UMSs. In general, the direct-push sensor systems provide cost-effective characterization information in soils that are penetrable with relatively shallow (less than 10 to 15 m) water tables. For sites with impenetrable lithology using direct-push techniques, the Ribbon NAPL Sampler Flexible Liner Underground Technologies Everting (FLUTe) membrane appears to be the most cost-effective approach. For all scenarios studied, partitioning interwell tracer tests (PITTs) are the most expensive approach due to the extensive pre-and post-PITT requirements. However, the PITT is capable of providing useful additional information, such as approximate DNAPL saturation, which is not generally available from any of the other approaches included in this comparison. [source]


Transient storage and downstream solute transport in nested stream reaches affected by beaver dams

HYDROLOGICAL PROCESSES, Issue 17 2009
Li Jin
Abstract Transient storage constitutes a key element in the hydrologic cycle of watersheds. Both in-channel slow moving water (dead zones) and hyporheic zones can contribute to transient storage, which retains water and solutes, increases residence time and influences solute transport in streams. Beaver dams and other in-stream obstructions throughout low-order streams attenuate streamflow and provide dead zone storage in pools. In this article, we report the results of four tracer tests in nested stream reaches in Cherry Creek (Wyoming, USA) covering ,2·5 km of stream length to explore how the degree of beaver dam obstructions and their impoundments influence water transient storage and downstream solute transport in low-order streams in the Rocky Mountain region of the American West. Travel-time parameters for the tracer tests increased linearly with beaver dam number (N) and pond size (V). Linear regression of the travel time to the peak concentration (Tp), the leading (Tl) and tailing edge (Tt) of the dye cloud and the duration of the dye cloud (Td) versus N and V were all significant (R2 = 0·99). Slopes of the linear regressions of Tt versus N and V, were three times larger than those for Tl, suggesting that longer residence times may be caused, in part, by transient storage in the stream system. One-dimensional transport with inflow and storage (OTIS) modelled cross-sectional area of transient storage zone (As) and dispersion coefficients (D) increased linearly with N and V and reach length. Two transient storage metrics, Fmean and , also showed a general increase with N and V, although the relationship was not as strong. This suggests that in-channel dead zones associated with beaver dams provide opportunities for generating transient water storage. The linear relationship between dispersion coefficient and reach length suggests the dispersion process might be analogous to the hydrodynamic dispersion in groundwater settings. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Interpretation of the enhancement of field-scale effective matrix diffusion coefficient in a single fracture using a semi-analytical power series solution

HYDROLOGICAL PROCESSES, Issue 6 2009
Tai-Sheng Liou
Abstract A power series solution for convergent radial transport in a single fracture (PCRTSF) is developed. Transport processes considered in PCRTSF include advection and hydrodynamic dispersion in the fracture, molecular diffusion in the matrix, diffusive mass exchange across the fracture-matrix interface, and mixing effects in the injection and the extraction boreholes. An analytical solution in terms of a power series in Laplace domain is developed first, which is then numerically inverted by de-Hoog et al.'s algorithm. Four dimensionless parameters determine the behaviour of a breakthrough curve (BTC) calculated by PCRTSF, which are, in the order of decreasing sensitivity, the matrix diffusion factor, two mixing factors, and the Peclet number. The first parameter is lumped from matrix porosity, effective matrix diffusion coefficient, fracture aperture, and retardation factors. Its value increases as the matrix diffusion effect becomes significant. A non-zero matrix diffusion factor results in a , 3/2 slope of the tail of a log,log BTC, a common property for tracer diffusion into an infinite matrix. Both mixing factors have equal effects on BTC characteristics. However, the Peclet number has virtually no effect on BTC tail. PCRTSF is applied to re-analyse two published test results that were obtained from convergent radial tracer tests in a discrete, horizontal fracture in Silurian dolomite. PCRTSF is able to fit the field BTCs better than the original channel model does if a large matrix diffusion coefficient is used. Noticeably, the ratio of field-scale to lab-scale matrix diffusion coefficients can be as large as 378. This enhancement of the field-scale matrix diffusion coefficient may be ascribed to the presence of a degraded zone at the fracture-matrix interface because of karstic effects, or to flow channeling as a result of aperture heterogeneity. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Solute transport in sand and chalk: a probabilistic approach

HYDROLOGICAL PROCESSES, Issue 5 2006
E. Carlier
Abstract A probabilistic approach is used to simulate particle tracking for two types of porous medium. The first is sand grains with a single intergranular porosity. Particle tracking is carried out by advection and dispersion. The second is chalk granulates with intergranular and matrix porosities. Sorption can occur with advection and dispersion during particle tracking. Particle tracking is modelled as the sum of elementary steps with independent random variables in the sand medium. An exponential distribution is obtained for each elementary step and shows that the whole process is Markovian. A Gamma distribution or probability density function is then deduced. The relationships between dispersivity and the elementary step are given using the central limit theorem. Particle tracking in the chalky medium is a non-Markovian process. The probability density function depends on a power of the distance. Experimental simulations by dye tracer tests on a column have been performed for different distances and discharges. The probabilistic approach computations are in good agreement with the experimental data. The probabilistic computation seems an interesting and complementary approach to simulate transfer phenomena in porous media with respect to the traditional numerical methods. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Some Issues on Core-Annulus and Cluster Models of Circulating Fluidized Bed Reactors

THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 5 2002
Hsiaotao T. BiArticle first published online: 19 MAY 200
Abstract The one-dimensional cluster model and the core-annulus model are examined based on existing correlations. The core-annulus model is found to give reasonable agreement with ozone decomposition data when the effective interphase mass transfer rate constant is equal to about 0.1 1/s, which is one order smaller than the reported values based on gas tracer tests. The prediction from the core-annulus model that the reactor performance decreases with increasing the riser diameter is found to be inconsistent with limited experimental data The one-dimensional cluster model predicts that a riser reactor performs very close to the pseudo-homogeneous plug flow reactor because of the high mass transfer rate between the cluster and the dilute phase. The improvement of model predictions lies in the better characterization of the cluster shape, size and the mass transfer rate between the cluster and the dilute phases. Le modèle de grappes unidimensionnel et le modèle c,ur-espace annulaire sont examinés d'après des corrélations existantes. On a trouvé que le modèle c,ur-espace annulaire décrivait raisonnablement bien les données de décomposition de l'ozone lorsque la constante de taux de transfert de matière entre phases réelle est égale à environ 0,1 s-1, ce qui est d'un ordre de grandeur plus petit que les valeurs obtenues d'après des tests par gaz traceurs. La prédiction du modèle c,ur-espace annulaire selon laquelle la performance du réacteur diminue avec l'augmentation du diamètre de la colonne montante s'avère non cohérente avec les quelques données expérimentales. Le modèle de grappes unidimensionnel prédit que la performance d'un réacteur à colonne montante est très proche de celle d'un réacteur à écoulement piston pseudo-homogène du fait du taux de transfert de matière élevé entre la grappe et la phase diluée. L'amélioration des prédictions du modèle repose sur une meilleure caractérisation de la forme des grappes, de leur taille et du taux de transfert de matière entre les grappes et les phases diluées. [source]