Trout Salmo Trutta L. (trout + salmo_trutta_l)

Distribution by Scientific Domains

Kinds of Trout Salmo Trutta L.

  • brown trout salmo trutta l.


  • Selected Abstracts


    Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): a review of aspects of their life histories

    ECOLOGY OF FRESHWATER FISH, Issue 1 2003
    A. Klemetsen
    Abstract ,,,Among the species in the family Salmonidae, those represented by the genera Salmo, Salvelinus, and Oncorhynchus (subfamily Salmoninae) are the most studied. Here, various aspects of phenotypic and life-history variation of Atlantic salmon Salmo salar L., brown trout Salmo trutta L., and Arctic charr Salvelinus alpinus (L.) are reviewed. While many strategies and tactics are commonly used by these species, there are also differences in their ecology and population dynamics that result in a variety of interesting and diverse topics that are challenging for future research. Atlantic salmon display considerable phenotypic plasticity and variability in life-history characters ranging from fully freshwater resident forms, where females can mature at approximately 10 cm in length, to anadromous populations characterised by 3,5 sea-winter (5SW) salmon. Even within simple 1SW populations, 20 or more spawning life-history types can be identified. Juveniles in freshwater can use both fluvial and lacustrine habitats for rearing, and while most smolts migrate to sea during the spring, fall migrations occur in some populations. At sea, some salmon undertake extensive oceanic migrations while other populations stay within the geographical confines of areas such as the Baltic Sea. At the other extreme are those that reside in estuaries and return to freshwater to spawn after spending only a few months at sea. The review of information on the diversity of life-history forms is related to conservation aspects associated with Atlantic salmon populations and current trends in abundance and survival. Brown trout is indigenous to Europe, North Africa and western Asia, but was introduced into at least 24 countries outside Europe and now has a world-wide distribution. It exploits both fresh and salt waters for feeding and spawning (brackish), and populations are often partially migratory. One part of the population leaves and feeds elsewhere, while another part stays as residents. In large, complex systems, the species is polymorphic with different size morphs in the various parts of the habitat. Brown trout feed close to the surface and near shore, but large individuals may move far offshore. The species exhibits ontogenetic niche shifts partly related to size and partly to developmental rate. They switch when the amount of surplus energy available for growth becomes small with fast growers being younger and smaller fish than slow growers. Brown trout is an opportunistic carnivore, but individuals specialise at least temporarily on particular food items; insect larvae are important for the young in streams, while littoral epibenthos in lakes and fish are most important for large trout. The sexes differ in resource use and size. Females are more inclined than males to become migratory and feed in pelagic waters. Males exploit running water, near-shore and surface waters more than females. Therefore, females feed more on zooplankton and exhibit a more uniform phenotype than males. The Arctic charr is the northernmost freshwater fish on earth, with a circumpolar distribution in the Holarctic that matches the last glaciation. Recent mtDNA studies indicate that there are five phylogeographic lineages (Atlantic, Arctic, Bering, Siberian and Acadian) that may be of Pleistocene origin. Phenotypic expression and ecology are more variable in charr than in most fish. Weights at maturation range from 3 g to 12 kg. Population differences in morphology and coloration are large and can have some genetic basis. Charr live in streams, at sea and in all habitats of oligotrophic lakes, including very deep areas. Ontogenetic habitat shifts between lacustrine habitats are common. The charr feed on all major prey types of streams, lakes and near-shore marine habitats, but has high niche flexibility in competition. Cannibalism is expressed in several cases, and can be important for developing and maintaining bimodal size distributions. Anadromy is found in the northern part of its range and involves about 40, but sometimes more days in the sea. All charr overwinter in freshwater. Partial migration is common, but the degree of anadromy varies greatly among populations. The food at sea includes zooplankton and pelagic fish, but also epibenthos. Polymorphism and sympatric morphs are much studied. As a prominent fish of glaciated lakes, charr is an important species for studying ecological speciation by the combination of field studies and experiments, particularly in the fields of morphometric heterochrony and comparative behaviour. [source]


    Genetic divergence between morphological forms of brown trout Salmo trutta L. in the Balkan region of Macedonia

    JOURNAL OF FISH BIOLOGY, Issue 5 2010
    S. Lo Brutto
    The objective of this study was to characterize the genetic structure of two Balkan brown trout morphotypes, Salmo macedonicus and Salmo pelagonicus, and to test whether molecular traits support the species' status proposed by traditional morphological identification. The mitochondrial DNA 12S-rDNA, cyt b and control region genes were sequenced in 15 specimens collected from three localities in the Former Yugoslav Republic of Macedonia. The results of these markers did not support the taxonomic category of species but confirmed the existence of two morphotypes, Salmo trutta macedonicus and Salmo trutta pelagonicus, in the Aegean,Adriatic lineages of the Salmo trutta species complex. [source]


    Genetic characterization of naturalized populations of brown trout Salmo trutta L. in southern Chile using allozyme and microsatellite markers

    AQUACULTURE RESEARCH, Issue 7 2003
    N Colihueque
    Abstract This study describes the genetic structure of five naturalized populations of brown trout in southern Chile using allozyme and microsatellite markers to establish levels of intra- and interpopulation genetic variability and divergence. Fourteen enzymatic systems were used comprising 20 loci and three microsatellite loci specific to brown trout. The genetic variability values (allozymes, P=20,35%, average=27%, HO=0.118,0.160, average=0.141; microsatellites, P=33.3,100%, average=66.66%, HO=0.202,0.274, average=0.229) are similar to values described in other naturalized populations of brown trout present in Chile, but higher than those observed in European populations of this species. Values of total genetic diversity (HT) (allozymes=0.1216 and microsatellites=0.3504) and relative genetic divergence (GST) (allozymes=9.5% and microsatellites=15%) were also similar to the results obtained in previous studies of Chilean populations of brown trout. These values, when compared with those obtained in Europe, proved to be similar for HT but lower for GST. The low interpopulational genetic differentiation was in accordance with the small genetic distance observed between the populations analysed (D Nei=0.004,0.025). On the other hand, the high frequency of one of the two alternative alleles of the phylogeographic marker locus LDH-5* in the populations analysed (LDH-5*90>0.84) would indicate a European origin, in particular Atlantic as opposed to Mediterranean, for the brown trout introduced into Chile. The high levels of genetic variability suggest a mixed origin for the naturalized brown trout in Chile, which could have originated either before or during the introduction process. Nevertheless, the low level of genetic differentiation between populations could reflect the short lapse of time in evolutionary terms, during which populations introduced into Chile have been exposed to different evolutionary forces, and which has not been sufficiently long to produce greater genetic differentiation between populations. [source]