Home About us Contact | |||
Trout
Kinds of Trout Terms modified by Trout Selected AbstractsINTEGRATED STUDIES ON THE FRESHNESS OF RAINBOW TROUT (ONCORHYNCHUS MYKISS WALBAUM) POSTMORTEM DURING CHILLED AND FROZEN STORAGEJOURNAL OF FOOD BIOCHEMISTRY, Issue 3 2004CARMEL C. WILLS Rainbow trout were killed by two methods, asphyxiation and clubbing. The concentration of ATP in specimens of skeletal muscle taken immediately after death was significantly (P<0.01) higher in clubbed (4.41 ± 0.86 ,mol/g) than in asphyxiated (2.00 ± 0.69 ,mol/g) fish. The shear force (Warner-Bratzler) required to cut the muscle was higher (P<0.05) in clubbed (8.33 ± 0.61 N) than in asphyxiated (6.85 ± 0.98 N) fish. Changes in the concentration of adenine nucleotides and in shear force were measured at intervals during storage at 3C and - 30C. The K value was calculated and was found to be correlated inversely with changes in shear force, Torrymeter readings and sensory assessment. There were no significant differences in the concentrations of ATP and metabolites between muscle sites. There were no differences in shear force measurements between the locations sampled nor between muscle taken from the right and left sides of the fish. [source] Role of Genetic Refuges in the Restoration of Native Gene Pools of Brown TroutCONSERVATION BIOLOGY, Issue 4 2009ROSA M. ARAGUAS introgresión de piscifactoría; pautas de manejo; acervos génicas nativas; refugios genéticos; repoblación de peces Abstract:,Captive-bred animals derived from native, alien, or hybrid stocks are often released in large numbers in natural settings with the intention of augmenting harvests. In brown trout (Salmo trutta), stocking with hatchery-reared non-native fish has been the main management strategy used to maintain or improve depleted wild brown trout populations in Iberian and other Mediterranean regions. This measure has become a serious threat to the conservation of native genetic diversity, mainly due to introgressive hybridization. Aware of this risk, the agency responsible for management of brown trout in the eastern Pyrenees (Spain) created "brown trout genetic refuges" to preserve the integrity of brown trout gene pools in this region. Within refuge areas, the prerefuge status with respect to fishing activities has been maintained, but hatchery releases have been banned completely. We evaluated this management strategy through a comparison of the stocking impact on native populations that accounted for stocking histories before and after refuge designations and fishing activities. In particular we examined the relevant scientific, cultural, and political challenges encountered. Despite agency willingness to change fishery policies to balance exploitation and conservation, acceptance of these new policies by anglers and genetic monitoring of refuge populations should also be considered. To improve management supported by genetic refuges, we suggest focusing on areas where the public is more receptive, considering the situation of local native diversity, and monitoring of adjacent introgressed populations. We recommend the use of directional supportive breeding only when a population really needs to be enhanced. In any case, management strategies should be developed to allow for protection within the context of human use. Resumen:,Animales criados en cautiverio derivados de individuos nativos, exóticos o híbridos a menudo son liberados en grandes cantidades en ambientes naturales con la intención de incrementar su explotación. En la trucha común (Salmo trutta), la repoblación con peces no nativos criados en granjas ha sido la principal estrategia de manejo utilizada para mantener o mejorar poblaciones naturales de trucha común en la Peninsula Ibérica y otras regiones Mediterráneas. Esta medida se ha convertido en una seria amenaza para la conservación de la diversidad genética nativa, debido principalmente a la hibridación introgresiva. Consciente de este riesgo, la agencia responsable del manejo de la trucha común en los Pirineos orientales (España) creó"refugios genéticos de trucha común" para preservar la integridad de las acervos genéticos de trucha común en esta región. Dentro de las áreas de refugio, se ha mantenido el estatus previo al refugio con respecto a las actividades pesqueras pero las liberaciones de peces de piscifactoría han sido completamente prohibidas. Evaluamos esta estrategia de manejo mediante la comparación del impacto de la repoblación sobre las poblaciones nativas que registraron historias de repoblación antes y después de la designación de refugios y de actividades pesqueras. En particular, examinamos los significativos retos científicos, culturales y políticos que encontramos. A pesar de la disponibilidad de la agencia para cambiar las políticas de pesca hacia un equilibrio entre la explotación y la conservación, también se debe considerar la aceptación de estas nuevas políticas por los pescadores y el monitoreo genético de las poblaciones en los refugios. Para mejorar el manejo en los refugios genéticos sugerimos centrarse en las áreas donde el público es más receptivo, considerando la situación de la diversidad nativa local y el monitoreo de las poblaciones introgresadas adyacentes. Recomendamos la utilización de la cría de apoyo direccional solo cuando una población realmente requiera ser mejorada. En cualquier caso, se deberían desarrollar estrategias de manejo para permitir la protección en el contexto del uso por el hombre. [source] Trout density and health in a stream with variable water temperatures and trace element concentrations: Does a cold-water source attract trout to increased metal exposure?ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 4 2009David D. Harper Abstract A history of hard-rock mining has resulted in elevated concentrations of heavy metals in Prickly Pear Creek (MT, USA). Remediation has improved water quality; however, dissolved zinc and cadmium concentrations still exceed U.S. Environmental Protection Agency water-quality criteria. Physical habitat, salmonid density, fish health, and water quality were assessed, and metal concentrations in fish tissues, biofilm, and macroinvertebrates were determined to evaluate the existing condition in the watershed. Cadmium, zinc, and lead concentrations in fish tissues, biofilm, and invertebrates were significantly greater than those at the upstream reference site and an experimental site farther downstream of the confluence. Fish densities were greatest, and habitat quality for trout was better, downstream of the confluence, where water temperatures were relatively cool (16°C). Measures of fish health (tissue metal residues, histology, metallothionein concentrations, and necropsies), however, indicate that the health of trout at this site was negatively affected. Trout were in colder but more contaminated water and were subjected to increased trace element exposures and associated health effects. Maximum water temperatures in Prickly Pear Creek were significantly lower directly below Spring Creek (16°C) compared to those at an experimental site 10 km downstream (26°C). Trout will avoid dissolved metals at concentrations below those measured in Prickly Pear Creek; however, our results suggest that the preference of trout to use cool water temperatures may supersede behaviors to avoid heavy metals. [source] Dynamics of 17,-Ethynylestradiol exposure in rainbow trout (Oncorhynchus mykiss): Absorption, tissue distribution, and hepatic gene expression patternENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 11 2006Ann D. Skillman Abstract 17,-Ethynylestradiol (EE2) is a synthetic estrogen identified in sewage effluents. To understand better the absorption kinetics of EE2 and the induction of vitellogenin (VTG) and estrogen receptor , (ER,) mRNA, we subjected male rainbow trout (Onchorynchus mykiss) to continuous water exposures of 125 ng/L of EE2 for up to 61 d. Trout were either repetitively sampled for blood plasma or serially killed at selected time intervals. Vitellogenin, ER, mRNA, and EE2 were measured using enzymelinked immunosorbent assay and using quantitative polymerase chain reaction and gas chromatography,mass spectrometry, respectively. In separate experiments, trout were exposed to EE2 for 7 d, and hepatic gene expression was assessed using a low- and high-density cDNA microarray. The EE2 was rapidly absorbed by the trout, with an apparent equilibrium at 16 h in plasma and liver. The ER, mRNA levels also increased rapidly, reaching near-peak levels by 48 h. In contrast, plasma levels of VTG continuously increased for 19 d. After 61 d, tissues with the highest levels of VTG were the liver, kidney, and testes. Microarray-based gene expression studies provided unexpected results. In some cases, known estrogen-responsive genes (e.g., ER,) were unresponsive, whereas many of the genes that have no apparent link to estrogen function or EE2 toxicity were significantly altered in expression. Of the two microarray approaches tested in the present study, the high-density array appeared to be superior because of the improved quality of the hybridization signal and the robustness of the response in terms of the number of genes identified as being EE2 responsive. [source] Stimulation of reproductive growth in rainbow trout (Oncorhynchus mykiss) following exposure to treated sewage effluentENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 10 2006Birgit Hoger Abstract Rainbow trout (Oncorhynchus mykiss) were exposed to 1.5 and 15% v/v secondary treated sewage effluent for 32 weeks in flow-through mesocosms. The exposure encompassed the full period of reproductive development for rainbow trout. Trout did not show any evidence of a dose-dependent change in growth. Fish exposed to 15% effluent were the only group to show mortality (5%) over the duration of the experiment. Trout at the highest effluent concentration had significantly higher liver size than reference water fish. Both male and female trout in the 15% exposure group also exhibited significantly higher gonad weight than the reference group. In female trout, this gonad size increase could be explained by higher egg numbers. Female and male trout both displayed a significant increase in plasma 17,-estradiol levels after exposure to 15% effluent, while neither sex had dose-dependent differences in plasma testosterone. Male trout displayed elevated vitellogenin levels and reduced plasma 11-ketotestosterone concentration after exposure to 15% effluent. Chemical examination of steroidal compounds, including both estrogens and androgens, in the wastewater revealed that only estrone was detectable at a mean concentration of 4.5 ng/L. It is assumed that the effects observed in trout exposed to 15% effluent were consistent with stimulation of reproductive development due to very low levels of estrogens. Overall, long-term exposure to treated sewage effluent containing low levels of estrogen did not have significant negative implications for reproductive development in rainbow trout. [source] Timing of exposure to a pulp and paper effluent influences the manifestation of reproductive effects in rainbow troutENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 11 2002Michael R. Van den Heuvel Abstract Rainbow trout were exposed to a secondary treated, thermomechanical/bleached kraft pulp and paper effluent in 12,000-L, flow-through exposure tanks at an environmental research facility located at a pulp and paper mill in Kawerau, New Zealand. Trout (age, 2+ years) were obtained from a local hatchery and exposed either to upstream river water or a nominal concentration of 12% (v/v) effluent diluted in upstream river water. Three treatment groups were used: Effluent exposure that started approximately three months before gonadal growth (eight-month total exposure), effluent exposure that started approximately halfway through gonadal development (two-month total exposure), and trout exposed to reference water alone for the total duration of the experiment. Trout were sacrificed just before spawning; exposure, growth, and reproductive endpoints were assessed during and at the termination of the experiment. Reduction in growth was observed in both sexes in the eight-month treatment group relative to the river water reference treatment group. No differences were observed in condition factor or liver size in either treatment. Females in the eightmonth exposure group also had significantly lower ovary weight. The two-month exposure group showed no differences from the reference group in growth or somatic indices. Estradiol and testosterone were reduced in blood samples taken from the eight-month exposure group by four months into the experiment as compared to the reference treatment. Steroid and vitellogenin levels in individual female trout from this treatment were significantly correlated with gonadosomatic indices (GSI) measured at the termination of the experiment. The GSI was not correlated strongly or consistently with pregnenolone, nor were any treatment-related pregnenolone differences observed, indicating that the steroid hormone reductions likely were not related to cholesterol side-chain cleavage. Male trout showed significant induction of vitellogenin and lower 11-ketotestosterone during the experiment (only the eight-month group was examined), but this did not result in any significant differences in testes development. Thus, this study has shown an impact of pulp mill effluent exposure on the reproductive physiology of female trout that appeared to be hormonally mediated. Furthermore, the effect could only be manifest when the exposure was initiated before the start of gonad development. [source] Sex-Specific Aggression and Antipredator Behaviour in Young Brown TroutETHOLOGY, Issue 7 2001Jörgen I. Johnsson Sex differences in adult behaviour are often interpreted as consequences of sexual selection and/or different reproductive roles in males and females. Sex-specific juvenile behaviour, however, has received less attention. Adult brown trout males are more aggressive than females during spawning and juvenile aggression may be genetically correlated with adult aggression in fish. We therefore tested the prediction that immature brown trout males are more aggressive and bolder than immature females. Because previous work has suggested that precocious maturation increases dominance in salmonids, we included precocious males in the study to test the prediction that early sexual maturation increase male aggression and boldness. Aggression and dominance relations were estimated in dyadic contests, whereas boldness was measured as a response to simulated predation risk using a model heron. Independent of maturity state, males initiated more than twice as many agonistic interactions as females in intersexual contests. However, males were not significantly more likely to win these contests than females. The response to a first predator attack did not differ between sex categories, but males reacted less to a second predator attack than females. Sexual maturity did not affect the antipredator response in males. Since there is no evidence from field studies that stream-living immature male and female salmonids differ in growth rate, it appears unlikely that the sex differences demonstrated are behavioural consequences of sex-specific investment in growth. It seems more likely that sex-specific behaviour arises as a correlated response to sexually selected gene actions promoting differential behaviour in adult males and females during reproduction. Alternatively, sex differences may develop gradually during juvenile life, because a gradual developmental program should be less costly than a sudden behavioural change at the onset of sexual maturity. [source] Seasonal variation in habitat use by salmon, Salmo salar, trout, Salmo trutta and grayling, Thymallus thymallus, in a chalk streamFISHERIES MANAGEMENT & ECOLOGY, Issue 4 2006W. D. RILEY Abstract, A portable multi-point decoder system deployed in a tributary of the River Itchen, a southern English chalk stream, recorded the habitats used by PIT-tagged juvenile salmon, Salmo salar L., trout, Salmo trutta L. and grayling, Thymallus thymallus L., with a high degree of spatial and temporal resolution. The fishes' use of habitat was monitored at 350 locations throughout the stream during September/October 2001 (feeding period) and January/February 2002 (over-wintering period). Salmon parr tended to occupy water 25,55 cm deep with a velocity between 0.4 and 1.0 m s,1. During both autumn and winter, first year salmon (0+ group) were associated with gravel substrate during the daytime and aquatic weed at night. In autumn, 1+ salmon were strongly associated with hard mud substrates during the day and with marginal tree roots at night. In winter, they were located on gravel substrate by day and gravel and mud at night. Trout were associated with a greater range of habitats than salmon, generally occupying deeper and faster water with increasing age. During the autumn, 0+ trout were located along shallow (5,10 cm) and slow (,0.1,0.4 m s,1) margins of the stream, amongst tree roots by day and on silty substrates at night. During winter the 0+ trout occupied silty substrates at all times. As age increased, trout increasingly used coarse substrates; hard mud, gravel and chalk, and weed at night. All age groups of grayling (0+, 1+ and 2+) tended to occupy hard gravel substrate at all times and used deeper and faster water with increasing age. The 1+ and 2+ groups were generally found in water 40,70 cm deep with a velocity between 0.3 and 0.5 ms,1, whilst the 0+ groups showed a preference for shallower water with reduced velocity at night, particularly in the winter. There were greater differences in the habitats used between species and age groups than between the autumn and winter periods, and the distribution of fish was more strongly influenced by substrate type than water depth or velocity. The results are discussed in relation to the habitat requirements of mixed salmonid populations and habitat management. [source] Ferox Trout (Salmo trutta) as `Russian dolls': complementary gut content and stable isotope analyses of the Loch Ness foodwebFRESHWATER BIOLOGY, Issue 7 2002J. GREY 1.,Conventional collection methods for pelagic fish species (netting, trawling) are impractical or prohibited in Loch Ness, U.K. To investigate trophic relationships at the top of the Loch Ness food web, an alternative strategy, angling, provided samples of the top predator, the purely piscivorous ferox trout (Salmo trutta). 2.,The gut contents of these fish provided further samples of prey-fish, and subsequent examination of prey-fish guts revealed their dietary intake, analogous to the famous nested `Russian dolls'. Each trophic level separated by gut content analysis provided further complementary samples for stable isotope analysis and thus information on the longer term, assimilated diet. 3.,Ferox trout exhibited considerable cannibalism to supplement a diet of Arctic charr (Salvelinus alpinus). However, conspecifics stemmed from a lower isotopic baseline in relation to charr, so ferox trout exhibited a lower trophic level than predicted (4.3) by using the ,15N values. Charr displayed dietary specialisation with increasing length, and isotopic values supported by the gut data placed the charr at a trophic level of 3.5. The isotope data also indicated that charr carbon was primarily autochthonous in origin. [source] Growth-enhanced fish can be competitive in the wildFUNCTIONAL ECOLOGY, Issue 5 2001J. I. Johnsson Summary 1,The widespread commercial interest in producing growth-enhanced organisms has raised concerns about ecological consequences, emphasizing the need to understand the costs and benefits associated with accelerated growth in nature. Here, sustained-release growth hormone (GH) implants were used to estimate the competitive ability of growth-enhanced fish in the wild. Growth rate, movements and survival over winter were compared between GH-implanted and control Brown Trout in a natural stream. The study was repeated over two consecutive years. 2,GH treatment had no effect on recapture rates, indicating that mortality rates did not differ between GH-treated and control fish. More GH-treated trout (63%) than control fish (41%) were recaptured within their 10 m section of release. Thus, GH-treated fish were more stationary than control fish over winter. 3,GH-treated fish grew about 20% faster than control fish. This was mainly because of a three-fold growth rate increase in GH-treated fish in late summer, whereas growth rates over winter did not differ significantly between treatment groups. These results were consistent over both replicate years. 4,This first study of growth-enhanced fish in the wild shows that they can survive well and therefore may out-compete normal fish with lower growth rates. Although selection against rapid growth may be more intense at other life-history stages and/or during periods of extreme climate conditions, our findings raise concerns that released or escaped growth-enhanced salmonids may compete successfully with resident fish. It is clear that the potential ecological risks associated with growth-enhanced fish should not be ignored. [source] Kinetics of degradation of adenosine triphosphate in chill-stored rainbow trout (Oncorhynchus mykiss)INTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 6 2005Peter Howgate Summary Trout that had been held in freshwater or in sea water were stored at 0, 5, or 10 °C, and in the case of sea-water-held trout, also at 15 °C. Samples were taken during storage for analysis of ATP-derived metabolites. The kinetics of degradation of ATP were investigated using two mathematical models, one depending on only endogenous enzymes acting in a sequence of consecutive first order reactions, and one assuming inosine was additionally converted to hypoxanthine by bacterial action. The former model adequately fitted the data from trout held in sea water, but the latter model was a better fit to data from the trout held in freshwater. The activation energy of loss of inosine monophosphate was estimated to be 17.4 kcal mol,1. [source] The role of trout in stream food webs: integrating evidence from field surveys and experimentsJOURNAL OF ANIMAL ECOLOGY, Issue 2 2006KRISTIAN MEISSNER Summary 1We evaluated the effects of brown trout on boreal stream food webs using field surveys and enclosure/exclosure experiments. Experimental results were related to prey preference of uncaged trout in the same stream, as well as to a survey of macroinvertebrate densities in streams with vs. without trout. Finally, we assessed the generality of our findings by examining salmonid predation on three groups of macroinvertebrate prey (chironomid midges, epibenthic grazers, invertebrate predators) in a meta-analysis. 2In a preliminary experiment, invertebrate predators showed a strong negative response to trout, whereas chironomids benefited from trout presence. In the main experiment, trout impact increased with prey size. Trout had the strongest effect on invertebrate predators and cased caddis larvae, whereas Baetis mayfly and chironomid larvae were unaffected. Trout impact on the largest prey seemed mainly consumptive, because prey emigration rates were low and independent of fish presence. Despite strong effects on macroinvertebrates, trout did not induce a trophic cascade on periphyton. Uncaged trout showed a strong preference for the largest prey items (predatory invertebrates and aerial prey), whereas Baetis mayflies and chironomids were avoided by trout. 3Densities of invertebrate predators were significantly higher in troutless streams. Baetis mayflies also were less abundant in trout streams, whereas densities of chironomids were positively, although non-significantly, related to trout presence. Meta-analysis showed a strong negative impact of trout on invertebrate predators, a negative but variable impact on mobile grazers (mainly mayfly larvae) and a slightly positive impact on chironomid larvae. 4Being size-selective predators, salmonid fishes have a strong impact on the largest prey types available, and this effect spans several domains of scale. Discrepancies between our experimental findings and those from the field survey and meta-analysis show, however, that for most lotic prey, small-scale experiments do not reflect fish impact reliably at stream-wide scales. 5Our findings suggest that small-scale experiments will be useful only if the experimental results are evaluated carefully against natural history information about the experimental system and interacting species across a wide array of spatial scales. [source] Hydrological disturbance benefits a native fish at the expense of an exotic fishJOURNAL OF APPLIED ECOLOGY, Issue 5 2006F. LEPRIEUR Summary 1Some native fish in New Zealand do not coexist with introduced salmonids. Previous studies of disjunct distributions of exotic brown trout Salmo trutta and native galaxiids demonstrated native extirpation except where major waterfalls prevented upstream migration of trout. In the Manuherikia River system, we predicted that water abstraction might be a further factor controlling the spatial distribution of both the invader and a native fish. 2We applied multiple discriminant function analyses to test for differences in environmental conditions (catchment and instream scales) at sites with roundhead galaxias Galaxias anomalus and brown trout in sympatry and allopatry. We then used a supervised artificial neural network (ANN) to predict the presence,absence of G. anomalus and brown trout (135 sites). The quantification of contributions of environmental variables to ANN models allowed us to identify factors controlling their spatial distribution. 3Brown trout can reach most locations in the Manuherikia catchment, and often occur upstream of G. anomalus. Their largely disjunct distributions in this river are mediated by water abstraction for irrigation, together with pool habitat availability and valley slope. Trout are more susceptible than the native fish to stresses associated with low flows, and seem to be prevented from eliminating galaxiid populations from sites in low gradient streams where there is a high level of water abstraction. 4Synthesis and applications. In contrast to many reports in the literature, our results show that hydrological disturbance associated with human activities benefits a native fish at the expense of an exotic in the Manuherikia River, New Zealand. Water abstraction is also known to have negative impacts on native galaxiids, therefore we recommend restoring natural low flows to maintain sustainable habitats for native galaxiids, implementing artificial barriers in selected tributaries to limit trout predation on native fish, and removing trout upstream. [source] Relating Instrumental Texture, Determined by Variable-Blade and Allo-Kramer Shear Attachments, to Sensory Analysis of Rainbow Trout, Oncorhynchus mykiss, FilletsJOURNAL OF FOOD SCIENCE, Issue 7 2010Aunchalee Aussanasuwannakul Abstract:, Texture is one of the most important quality attributes of fish fillets, and accurate assessment of variation in this attribute, as affected by storage and handling, is critical in providing consistent quality product. Trout fillets received 4 treatments: 3-d refrigeration (R3), 7-d refrigeration (R7), 3-d refrigeration followed by 30-d frozen storage (R3F30), and 7-d refrigeration followed by 30-d frozen storage (R7F30). Instrumental texture of raw and cooked fillets was determined by 3 approaches: 5-blade Allo-Kramer (AK) and variable-blade (VB) attachment with 12 blades arranged in perpendicular (PER) and parallel (PAR) orientations to muscle fibers. Correlation between instrumental texture and sensory hardness, juiciness, elasticity, fatness, and coarseness was determined. Muscle pH remained constant at 6.54 to 6.64. Raw fillets lost 3.66% of their original weight after 30-d frozen storage. After cooking, weight loss further increased to 15.97%. Moisture content decreased from 69.11 to 65.02%, while fat content remained constant at 10.41%. VBPER detected differences in muscle sample strength (P= 0.0019) and demonstrated effect of shear direction reported as maximum force (g force/g sample). AKPER detected differences in energy of shear (g × mm; P= 0.0001). Fillets that received F30 treatments were less extensible. Cooking increased muscle strength and toughness. Force determined by VBPER was correlated with sensory hardness (r= 0.423, P= 0.0394) and cook loss (r= 0.412, P= 0.0450). VB attachment is accurate, valid, and less destructive in fillet texture analysis. Practical Application:, A new shearing device was validated with sensory analysis. Settings and parameters obtained could be used to define fillet texture quality associated with muscle fiber orientation. [source] Amino Acid, Fatty Acid, and Mineral Profiles of Materials Recovered from Rainbow Trout (Oncorhynchus mykiss) Processing By-Products Using Isoelectric Solubilization/PrecipitationJOURNAL OF FOOD SCIENCE, Issue 9 2007Y.-C. Chen ABSTRACT:, Protein, lipid, and insolubles (bones, skin, scales, fins, insoluble protein, and more) were recovered from rainbow trout processing by-products by means of isoelectric solubilization/precipitation at basic pH and acidic pH. Isoelectric solubilization/precipitation of the trout processing by-products resulted in the recovery of protein that was higher (P < 0.05) in essential amino acids (EAAs), non-EAAs, and total EAA/total AA ratio when compared to the processing by-products. Basic pH treatments yielded a higher (P < 0.05) content of EAAs than the acidic pH treatments. Nutritional quality of the recovered protein was high based on EAAs meeting the FAO/WHO/UNU recommendations for adults. The presence of omega-3 and omega-6 fatty acids (,-3, ,-6 FAs) and the ,-3/,-6 ratio in the recovered lipids were similar to the trout processing by-products, indicating that the pH treatments had no effect on these FAs. Ca and P contents of the processing by-products exceeded the recommended dietary allowances (RDA), but Fe and Mg did not. Basic pH treatments yielded protein with the lowest (P < 0.05) amount of minerals and the highest (P < 0.05) amount of Ca, P, and Mg in the insolubles when compared to acidic pH. The isoelectric solubilization/precipitation of the processing by-products effectively removed minerals from the recovered protein without removal of the bones, skin, scales, fins, and so on, prior to processing. The results indicated that isoelectric solubilization/precipitation, particularly at basic pH, permitted recovery of high-quality protein and lipids from fish processing by-products for human food uses; also, the recovered insolubles may be used in animal feeds as a source of minerals. [source] Enhancement of Omega-3 Fatty Acid Content in Rainbow Trout (Oncorhynchus mykiss) FilletsJOURNAL OF FOOD SCIENCE, Issue 7 2006Y.C. Chen ABSTRACT:, A commercial diet for rainbow trout (Oncorhynchus mykiss) was supplemented with 0 (control), 8.5%, or 15.0% (w/w) of flaxseed oil (FO). Trouts were harvested on days 0, 30, 60, 90, and 120. Boneless skinless trout fillets were recovered from fish and analyzed for fatty acid profile (FAP) and total fat. While the total fat levels of fillets were not (P > 0.05) affected by FO supplementation, the FAP was. The lowest (P < 0.05) proportion of saturated fatty acids was obtained from 15%, followed by 8.5% FO group, and the control group. The opposite results were observed for the unsaturated fatty acids. The highest (P < 0.05) content of omega-3 fatty acids (,-3 FA) in fillets was determined in the 15.0%, followed by the 8.5% FO group, and the control group. While the 15.0% and 8.5% of FO supplementation increased (P < 0.05) concentration of linolenic acid (ALA, 18:3n3) in fillets, the eicosapentaenoic (EPA, 20:5n3) and docosahexaenoic acids (DHA, 22:6n3) contents decreased (P < 0.05). At the same time, higher (P < 0.05) concentration of linoleic (L, 18:2n6) and lower (P < 0.05) concentration of arachidonic acids (AN, 20:4n6) in fillets were obtained in the 15.0% FO group compared with the control group. The ,-3/,-6 FA ratio was also improved (P < 0.05) by supplementing basal diet with 15.0% FO. Our results suggest that trout fillets with enhanced content of ,-3 FA can be developed from trout raised in aquaculture systems fed diets supplemented with 15.0% FO. These fillets could be a basis to develop novel functional aquatic foods for some niche markets. [source] Leptin mRNA and Protein Immunoreactivity in Adipose Tissue and Liver of Rainbow Trout (Oncorhynchus mykiss) and Immunohistochemical Localization in LiverANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 6 2009B. Pfundt Summary Leptin is an important modulator of energy balance and metabolism in mammals, but for evolutionary older vertebrates like fish, the first reports on leptin expression were only recently characterized and the functional role scarcely. In this study, we demonstrated leptin immunoreactivity in liver tissue of rainbow trout (Oncorhynchus mykiss) by immunohistochemistry using three different polyclonal antibodies against mammalian leptin. Immunoreactivity was observed in hepatocytes and also in parts of the biliary system. Using Western blot, we detected an immunoreactive band of about 16 kDa in serum and visceral adipose tissue (AT) of rainbow trout. The presence of leptin in fish AT has been doubted in other studies. Besides the immunoreactivity, leptin mRNA was detected in trout AT albeit not in all animals sampled. Our observations add further evidence to the concept of AT being a source of leptin in trouts. Moreover, the cellular localization of leptin immunoreactivity in liver opens up new vistas for understanding the functional role of leptin in teleosts. [source] Quantifying risks of volitional consumption of New Zealand Mudsnails by Steelhead and Rainbow TroutAQUACULTURE RESEARCH, Issue 4 2010Rolita Louise Bruce Abstract To assess the risk of transferring alien, invasive New Zealand mudsnails (NZMS) Potamopyrgus antipodarum with shipments of live rainbow or steelhead trout Oncorhynchus mykiss, we conducted laboratory trials to quantify and determine the volitional ingestion of snails from the bottom of laboratory tanks. Approximately, 2000 snails were placed on the bottom of a test tank and groups of 10 fish were added to each tank. After 48 h, the fish were removed, euthanized and the snails in the gastrointestinal tract were counted, and the proportion of snails remaining in each tank was measured. We found that both rainbow trout and steelhead consumed NZMS, but rainbow trout consumed nearly twice the number of snails that were consumed by steelhead trout. Feeding fish a maintenance diet increased the total consumption of snails by fish to an average of 64.5 snails per rainbow trout. Our study suggests that management strategies that depurate fish without feed for 48 h to reduce the risk of transfer of NZMS are not viable in preventing the transport of snails if rearing waters contain snails. [source] Transfer of toxaphene and chlordane into farmed rainbow trout, Oncorhynchus mykiss (Walbaum) via feedAQUACULTURE RESEARCH, Issue 12 2002H Karl Abstract The study was carried out to quantitate the transfer of toxaphene and chlordane compounds from commercial fish feed into the edible part of rainbow trout, Oncorhynchus mykiss (Walbaum) under normal rearing conditions. Trout were fed with unspiked high energy feed for salmon (fat content 26,30%) over a period of 19 months. The average weight of trout increased from 10 g to more than 2092 g, reaching sizes of 51 cm length. Considerable amounts of toxaphene and chlordane residues were transferred from fish feed into trout muscle. Toxaphene concentrations increased up to 8.6 µg (, toxaphene indicator compounds 1,3) kg,1 wet weight (w.w.) and chlordane reached 5.3 µg ,oxy -, trans -, cis -chlordane + t -nonachlor kg,1 w.w. Results are also discussed on the contaminant levels based on the fat content and the effect of sexual maturation is considered in this study. The data allow the establishment of transfer rates for toxaphene and chlordane congeners from high energy diet into the edible part of farmed rainbow trout. [source] Enhancement of Omega-3 Fatty Acid Content in Rainbow Trout (Oncorhynchus mykiss) FilletsJOURNAL OF FOOD SCIENCE, Issue 7 2006Y.C. Chen ABSTRACT:, A commercial diet for rainbow trout (Oncorhynchus mykiss) was supplemented with 0 (control), 8.5%, or 15.0% (w/w) of flaxseed oil (FO). Trouts were harvested on days 0, 30, 60, 90, and 120. Boneless skinless trout fillets were recovered from fish and analyzed for fatty acid profile (FAP) and total fat. While the total fat levels of fillets were not (P > 0.05) affected by FO supplementation, the FAP was. The lowest (P < 0.05) proportion of saturated fatty acids was obtained from 15%, followed by 8.5% FO group, and the control group. The opposite results were observed for the unsaturated fatty acids. The highest (P < 0.05) content of omega-3 fatty acids (,-3 FA) in fillets was determined in the 15.0%, followed by the 8.5% FO group, and the control group. While the 15.0% and 8.5% of FO supplementation increased (P < 0.05) concentration of linolenic acid (ALA, 18:3n3) in fillets, the eicosapentaenoic (EPA, 20:5n3) and docosahexaenoic acids (DHA, 22:6n3) contents decreased (P < 0.05). At the same time, higher (P < 0.05) concentration of linoleic (L, 18:2n6) and lower (P < 0.05) concentration of arachidonic acids (AN, 20:4n6) in fillets were obtained in the 15.0% FO group compared with the control group. The ,-3/,-6 FA ratio was also improved (P < 0.05) by supplementing basal diet with 15.0% FO. Our results suggest that trout fillets with enhanced content of ,-3 FA can be developed from trout raised in aquaculture systems fed diets supplemented with 15.0% FO. These fillets could be a basis to develop novel functional aquatic foods for some niche markets. [source] Role of Genetic Refuges in the Restoration of Native Gene Pools of Brown TroutCONSERVATION BIOLOGY, Issue 4 2009ROSA M. ARAGUAS introgresión de piscifactoría; pautas de manejo; acervos génicas nativas; refugios genéticos; repoblación de peces Abstract:,Captive-bred animals derived from native, alien, or hybrid stocks are often released in large numbers in natural settings with the intention of augmenting harvests. In brown trout (Salmo trutta), stocking with hatchery-reared non-native fish has been the main management strategy used to maintain or improve depleted wild brown trout populations in Iberian and other Mediterranean regions. This measure has become a serious threat to the conservation of native genetic diversity, mainly due to introgressive hybridization. Aware of this risk, the agency responsible for management of brown trout in the eastern Pyrenees (Spain) created "brown trout genetic refuges" to preserve the integrity of brown trout gene pools in this region. Within refuge areas, the prerefuge status with respect to fishing activities has been maintained, but hatchery releases have been banned completely. We evaluated this management strategy through a comparison of the stocking impact on native populations that accounted for stocking histories before and after refuge designations and fishing activities. In particular we examined the relevant scientific, cultural, and political challenges encountered. Despite agency willingness to change fishery policies to balance exploitation and conservation, acceptance of these new policies by anglers and genetic monitoring of refuge populations should also be considered. To improve management supported by genetic refuges, we suggest focusing on areas where the public is more receptive, considering the situation of local native diversity, and monitoring of adjacent introgressed populations. We recommend the use of directional supportive breeding only when a population really needs to be enhanced. In any case, management strategies should be developed to allow for protection within the context of human use. Resumen:,Animales criados en cautiverio derivados de individuos nativos, exóticos o híbridos a menudo son liberados en grandes cantidades en ambientes naturales con la intención de incrementar su explotación. En la trucha común (Salmo trutta), la repoblación con peces no nativos criados en granjas ha sido la principal estrategia de manejo utilizada para mantener o mejorar poblaciones naturales de trucha común en la Peninsula Ibérica y otras regiones Mediterráneas. Esta medida se ha convertido en una seria amenaza para la conservación de la diversidad genética nativa, debido principalmente a la hibridación introgresiva. Consciente de este riesgo, la agencia responsable del manejo de la trucha común en los Pirineos orientales (España) creó"refugios genéticos de trucha común" para preservar la integridad de las acervos genéticos de trucha común en esta región. Dentro de las áreas de refugio, se ha mantenido el estatus previo al refugio con respecto a las actividades pesqueras pero las liberaciones de peces de piscifactoría han sido completamente prohibidas. Evaluamos esta estrategia de manejo mediante la comparación del impacto de la repoblación sobre las poblaciones nativas que registraron historias de repoblación antes y después de la designación de refugios y de actividades pesqueras. En particular, examinamos los significativos retos científicos, culturales y políticos que encontramos. A pesar de la disponibilidad de la agencia para cambiar las políticas de pesca hacia un equilibrio entre la explotación y la conservación, también se debe considerar la aceptación de estas nuevas políticas por los pescadores y el monitoreo genético de las poblaciones en los refugios. Para mejorar el manejo en los refugios genéticos sugerimos centrarse en las áreas donde el público es más receptivo, considerando la situación de la diversidad nativa local y el monitoreo de las poblaciones introgresadas adyacentes. Recomendamos la utilización de la cría de apoyo direccional solo cuando una población realmente requiera ser mejorada. En cualquier caso, se deberían desarrollar estrategias de manejo para permitir la protección en el contexto del uso por el hombre. [source] Pacific Salmon Extinctions: Quantifying Lost and Remaining DiversityCONSERVATION BIOLOGY, Issue 4 2007RICHARD G. GUSTAFSON biodiversidad; diversidad de salmones; extinción de poblaciones; historia de vida de salmones Abstract:,Widespread population extirpations and the consequent loss of ecological, genetic, and life-history diversity can lead to extinction of evolutionarily significant units (ESUs) and species. We attempted to systematically enumerate extinct Pacific salmon populations and characterize lost ecological, life history, and genetic diversity types among six species of Pacific salmon (Chinook [Oncorhynchus tshawytscha], sockeye [O. nerka], coho [O. kisutch], chum [O. keta], and pink salmon [O. gorbuscha] and steelhead trout [O. mykiss]) from the western contiguous United States. We estimated that, collectively, 29% of nearly 1400 historical populations of these six species have been lost from the Pacific Northwest and California since Euro-American contact. Across all species there was a highly significant difference in the proportion of population extinctions between coastal (0.14 extinct) and interior (0.55 extinct) regions. Sockeye salmon (which typically rely on lacustrine habitats for rearing) and stream-maturing Chinook salmon (which stay in freshwater for many months prior to spawning) had significantly higher proportional population losses than other species and maturation types. Aggregate losses of major ecological, life-history, and genetic biodiversity components across all species were estimated at 33%, 15%, and 27%, respectively. Collectively, we believe these population extirpations represent a loss of between 16% and 30% of all historical ESUs in the study area. On the other hand, over two-thirds of historical Pacific salmon populations in this area persist, and considerable diversity remains at all scales. Because over one-third of the remaining populations belong to threatened or endangered species listed under the U.S. Endangered Species Act, it is apparent that a critical juncture has been reached in efforts to preserve what remains of Pacific salmon diversity. It is also evident that persistence of existing, and evolution of future, diversity will depend on the ability of Pacific salmon to adapt to anthropogenically altered habitats. Resumen:,Las extirpaciones generalizadas de poblaciones y la consecuente pérdida de diversidad ecológica, genética y de historia natural puede llevar a la extinción de unidades evolutivamente significativas (UES) y especies. Intentamos enumerar sistemáticamente a las poblaciones extintas de salmón del Pacífico y caracterizar a los tipos de diversidad ecológica, de historia natural y genética de seis especies de salmón del Pacífico Oncorhynchus tshawytscha, O. nerka, O. kisutch, O. keta, y O. gorbuscha; y trucha O. mykiss en el occidente de Estados Unidos. Estimamos que, colectivamente, se ha perdido a 29% de casi 1400 poblaciones históricas de estas seis especies en el Pacífico Noroeste y California desde la colonización europea. En todas las especies hubo una diferencia altamente significativa en la proporción de extinción de poblaciones entre regiones costeras (0.14 extintas) e interiores (0.55 extintas). O. nerka (que típicamente cría en hábitats lacustres) y O. tshawytscha (que permanece en agua dulce por muchos meses antes del desove) tuvieron pérdidas poblacionales significativamente mayores que las otras especies y tipos de maduración. Se estimó que las pérdidas agregadas de componentes mayores de la biodiversidad ecológica, de historia natural y genética en todas las especies fueron de 33%, 15% y 27%, respectivamente. Colectivamente, consideramos que estas extirpaciones de poblaciones representan una pérdida entre 16% y 30% de todas las UES históricas en el área de estudio. Por otro lado, más de dos tercios de las poblaciones históricas de salmón del Pacífico persisten en esta área, y aun hay considerable diversidad en todas las escalas. Debido a que más de un tercio de las poblaciones restantes pertenecen a especies enlistadas como amenazadas o en peligro en el Acta de Especies en Peligro de E. U. A., es evidente que se ha llegado a una disyuntiva crítica en los esfuerzos para preservar lo que queda de la diversidad de salmón del Pacífico. También es evidente que la persistencia de la diversidad existente, y su futura evolución, dependerá de la habilidad del salmón del Pacífico para adaptarse a hábitats alterados antropogénicamente. [source] Individual, Population, Community, and Ecosystem Consequences of a Fish Invader in New Zealand StreamsCONSERVATION BIOLOGY, Issue 1 2003Colin R. Townsend But because invaders can have unexpected indirect effects in food webs, invasion ecologists need to integrate processes at the population level and other ecological levels. I describe a series of coordinated studies in New Zealand streams that address the effect of an exotic fish on individual behavior, population, community, and ecosystem patterns. Such case studies are important as an aid to the formulation of policy about invasions that are especially likely to become problematic. At the individual level, grazing invertebrates showed changes in behavior as a result of the introduction of brown trout ( Salmo trutta), a predator that exerts a very different selection pressure than do native fish. At the population level, trout have replaced nonmigratory galaxiid fish in some streams but not others, and have affected the distributions of crayfish and other large invertebrates. At the community level, trout have suppressed grazing pressure from invertebrates and are thus responsible for enhancing algal biomass and changing algal species composition. Finally, at the ecosystem level, essentially all annual production of invertebrates is consumed by trout ( but not by galaxiids), and algal primary productivity is six times higher in a trout stream. This leads, in turn, to an increased flux of nutrients from the water to the benthic community. The trout invasion has led to strong top-down control of community structure and ecosystem functioning via its effects on individual behavior and population distribution and abundance. Particular physiological, behavioral, and demographic traits of invaders can lead to profound ecosystem consequences that managers need to take into account. Resumen: Para desarrollar procedimientos y políticas de manejo efectivos a menudo será necesario conocer la biología de la población de especies invasoras. Sin embargo, debido a que los invasores pueden tener efectos indirectos inesperados en las redes alimenticias, ecólogos de invasión necesitan integrar procesos en la población y otros niveles ecológicos. Describo una serie de estudios coordinados en arroyos de Nueva Zelanda que enfocan el impacto de un pez exótico sobre los patrones de comportamiento individual, de la población, la comunidad y el ecosistema. Tales estudios de caso son importantes como un auxiliar para la formulación de políticas sobre invasiones que pueden ser especialmente problemáticas. Al nivel individual, los invertebrados que pastorean mostraron cambios de conducta como resultado de la introducción de la trucha café ( Salmo trutta), un depredador que ejerce una presión de selección muy diferente a la de los peces nativos. En el nivel de población, las truchas han reemplazado a peces galaxídos no migratorios en algunos arroyos pero no en otros y han afectado las distribuciones de cangrejos de río y otros invertebrados mayores. Al nivel de comunidad, las truchas han suprimido la presión de pastoreo por invertebrados y por lo tanto son responsables del incremento de la biomasa de algas y del cambio en la composición de especies de algas. Finalmente, a nivel de ecosistema, la producción anual de invertebrados esencialmente es consumida por las truchas ( pero no por galaxídos), y la productividad primaria de algas es seis veces mayor en arroyos con truchas. A su vez, esto conduce a incrementos en el flujo de nutrientes del agua hacia la comunidad béntica. La invasión de truchas ha conducido a un fuerte control de arriba hacia abajo de la estructura de la comunidad y del funcionamiento del ecosistema por medio de sus efectos sobre la conducta individual y la distribución y abundancia de la población. Las características fisiológicas, de conducta y demográficas particulares de los invasores pueden llevar a consecuencias profundas en los ecosistemas que los administradores necesitan tomar en consideración. [source] Brain distribution of myosin Va in rainbow trout Oncorhynchus mykissACTA ZOOLOGICA, Issue 1 2008Kátia Gisele Oliveira Rancura Abstract This study presents data on myosin Va localization in the central nervous system of rainbow trout. We demonstrate, via immunoblots and immunocytochemistry, the expression of myosin Va in several neuronal populations of forebrain, midbrain, hindbrain and spinal cord. The neuronal populations that express myosin Va in trout constitute a very diverse group that do not seem to have many specific similarities such as neurotransmitters used, cellular size or length of their processes. The intensity of the immunoreactivity and the number of immunoreactive cells differ from region to region. Although there is a broad distribution of myosin Va, it is not present in all neuronal populations. This result is in agreement with a previous report, which indicated that myosin Va is approximately as abundant as conventional myosin II and kinesin, and it is broadly involved in neuronal motility events such as axoplasmatic transport. Furthermore, this distribution pattern is in accordance with what was shown in rats and mice; it indicates phylogenetic maintenance of the myosin Va main functions. [source] Environmentally induced migration: the importance of foodECOLOGY LETTERS, Issue 6 2006Ivan C. Olsson Abstract The decision to migrate or not is regarded as genetically controlled for many invertebrate and vertebrate taxa. Here, we show that the environment influences this decision. By reciprocally transplanting brown trout (Salmo trutta L.) between two sections in a river, we show that both migratory and non-migratory behaviour can be environmentally induced; migratory behaviour developed in a river section with high brown trout densities and low specific growth rates, whereas non-migratory behaviour developed in a section with low brown trout densities and high specific growth rates. In a laboratory experiment, we tested the effect of food availability on the development of migratory and non-migratory body morphologies and found that most brown trout became migrants when food levels were low but fewer did so at high food levels. Thus, the decision to migrate seems to be a plastic response, influenced by growth opportunities. [source] Functional response and size-dependent foraging on aquatic and terrestrial prey by brown trout (Salmo trutta L.)ECOLOGY OF FRESHWATER FISH, Issue 2 2010P. Gustafsson Gustafsson P, Bergman E, Greenberg LA. Functional response and size-dependent foraging on aquatic and terrestrial prey by brown trout (Salmo trutta L.).Ecology of Freshwater Fish 2010: 19: 170,177. © 2010 John Wiley & Sons A/S Abstract ,, Terrestrial invertebrate subsidies are believed to be important energy sources for drift-feeding salmonids. Despite this, size-specific use of and efficiency in procuring this resource have not been studied to any great extent. Therefore, we measured the functional responses of three size classes of wild brown trout Salmo trutta (0+, 1+ and ,2+) when fed either benthic- (Gammarus sp.) or surface-drifting prey (Musca domestica) in laboratory experiments. To test for size-specific prey preferences, both benthic and surface prey were presented simultaneously by presenting the fish with a constant density of benthic prey and a variable density of surface prey. The results showed that the functional response of 0+ trout differed significantly from the larger size classes, with 0+ fish having the lowest capture rates. Capture rates did not differ significantly between prey types. In experiments when both prey items were presented simultaneously, capture rate differed significantly between size classes, with larger trout having higher capture rates than smaller trout. However, capture rates within each size class did not change with prey density or prey composition. The two-prey experiments also showed that 1+ trout ate significantly more surface-drifting prey than 0+ trout. In contrast, there was no difference between 0+ and ,2+ trout. Analyses of the vertical position of the fish in the water column corroborated size-specific foraging results: larger trout remained in the upper part of the water column between attacks on surface prey more often than smaller trout, which tended to seek refuge at the bottom between attacks. These size-specific differences in foraging and vertical position suggest that larger trout may be able to use surface-drifting prey to a greater extent than smaller conspecifics. [source] Effects of stocked trout on native fish communities in boreal foothills lakesECOLOGY OF FRESHWATER FISH, Issue 2 2010Leslie E. Nasmith Nasmith LE, Tonn WM, Paszkowski CA, Scrimgeour GJ. Effects of stocked trout on native fish communities in boreal foothills lakes. Ecology of Freshwater Fish 2010: 19: 279,289. © 2010 John Wiley & Sons A/S Abstract,,, Ecological effects of stocking nonnative trout into lakes are receiving increased attention, especially in alpine environments. We assessed effects of stocked trout on native forage fishes in the boreal foothills of Alberta (Canada) by comparing fish density, population size structure and spatial and temporal activities in stocked and unstocked lakes over 3 years (2005,2007). The numerically dominant dace (primarily Phoxinus spp.) were larger in stocked lakes, consistent with size-limited predation. Dace were also more crepuscular and concentrated on the lake-bottom in stocked lakes, compared to more daytime activity in the water column in unstocked lakes. There were, however, no demonstrable effects of trout on the abundance of forage fish. The lack of major population-level impacts of stocked trout suggests that current stocking practices, characteristics of boreal foothill lakes (e.g. thermal structure, abundant invertebrates, dense macrophytes) and/or behavioural adjustments of forage fish contribute to healthy native fish populations in our stocked lakes. [source] Relationships between water temperatures and upstream migration, cold water refuge use, and spawning of adult bull trout from the Lostine River, Oregon, USAECOLOGY OF FRESHWATER FISH, Issue 1 2010P. J. Howell Howell PJ, Dunham JB, Sankovich PM. Relationships between water temperatures and upstream migration, cold water refuge use, and spawning of adult bull trout from the Lostine River, Oregon, USA. Ecology of Freshwater Fish 2010: 19: 96,106. This article is a US Government work and is in the public domain in the USA Abstract,,, Understanding thermal habitat use by migratory fish has been limited by difficulties in matching fish locations with water temperatures. To describe spatial and temporal patterns of thermal habitat use by migratory adult bull trout, Salvelinus confluentus, that spawn in the Lostine River, Oregon, we employed a combination of archival temperature tags, radio tags, and thermographs. We also compared temperatures of the tagged fish to ambient water temperatures to determine if the fish were using thermal refuges. The timing and temperatures at which fish moved upstream from overwintering areas to spawning locations varied considerably among individuals. The annual maximum 7-day average daily maximum (7DADM) temperatures of tagged fish were 16,18 °C and potentially as high as 21 °C. Maximum 7DADM ambient water temperatures within the range of tagged fish during summer were 18,25 °C. However, there was no evidence of the tagged fish using localized cold water refuges. Tagged fish appeared to spawn at 7DADM temperatures of 7,14 °C. Maximum 7DADM temperatures of tagged fish and ambient temperatures at the onset of the spawning period in late August were 11,18 °C. Water temperatures in most of the upper Lostine River used for spawning and rearing appear to be largely natural since there has been little development, whereas downstream reaches used by migratory bull trout are heavily diverted for irrigation. Although the population effects of these temperatures are unknown, summer temperatures and the higher temperatures observed for spawning fish appear to be at or above the upper range of suitability reported for the species. [source] A patch perspective on summer habitat use by brown trout Salmo trutta in a high plains stream in Wyoming, USAECOLOGY OF FRESHWATER FISH, Issue 3 2009R. R. O'Connor Abstract,,, We quantified the use of habitat patches by brown trout, Salmo trutta, during summer conditions in a plains stream in the western United States. A Global Positioning System was used to map discrete habitat patches (2,420 m2) consisting of macrophytes, wood accumulation, or deep water. Habitat use by brown trout was monitored by radio telemetry. Brown trout used habitat in a nonrandom manner with 99% of all daytime observations and 91% of all nighttime observations occurring in patches that consisted of combinations of deep water, wood accumulations or macrophytes even though such patches constituted only 9.8% of the available habitat. Brown trout used deep water almost exclusively during the day but broadened their habitat use at night. Most fish stayed within a large plunge pool created by a low-head dam. This pool supplemented the deep-water habitat that was naturally rare in our study area and illustrates how human modifications can sometimes create habitat patches important for stream fishes. [source] Tagging effects on three non-native fish species in England (Lepomis gibbosus, Pseudorasbora parva, Sander lucioperca) and of native Salmo truttaECOLOGY OF FRESHWATER FISH, Issue 2 2009S. Stak Abstract,,, To address the dearth of information on tagging effects and long-term survivorship of tagged fish in native and introduced species, laboratory and field investigations were undertaken on three non-native fish species (pumpkinseed Lepomis gibbosus; topmouth gudgeon Pseudorasbora parva; pikeperch Sander lucioperca) tagged with coded-wire (CW), passive integrated transponder (PIT), radio (RT) telemetry and/or acoustic tags (AT), with survivorship of native brown trout (Salmo trutta) examined in the field. Laboratory results revealed high survivorship following tag attachment/insertion and resumption of feeding within 24,48 h of tagging (all mortalities could be attributed to an unrelated outbreak of fungal infection), with retention rates being high in both pumpkinseed and pikeperch but low in topmouth gudgeon (excluded from field studies). In the field, short-term post-operation survival was high in pikeperch, pumpkinseed and brown trout. In pumpkinseed and trout, 100% of RT fish survived a 24,30 day tracking study, with 60% and 80%, respectively, recaptured alive at least 3 months post-tagging. Of PIT tagged pumpkinseed, 44% were recaptured (after 6,18 months), with small-sized, CW-tagged fish (0.38 g weight) captured up to 1 year after tagging. In pikeperch, all AT fish except one (the smallest specimen) survived their full expected tracking period (i.e. tag life) , the single lost specimen survived at least half of its expected tracking period (i.e. 6 month battery life). Overall, the tagging methods used were highly effective in pumpkinseed and pikeperch, showing good retention and survival, but PIT tagging of topmouth gudgeon was plagued by low survivorship and tag rejection. [source] |